2D Graphics

Java 2D™ API and shows you how to display and print 2D graphics in your Java programs. The trail is intended for developers who want to enrich their knowledge of the Java 2D API, as well as for beginners in computer graphics. Almost every section contains relevant examples to illustrate specific capabilities. The Java 2D API enables you to easily perform the following tasks:

· Draw lines, rectangles and any other geometric shape.

· Fill those shapes with solid colors or gradients and textures.

· Draw text with options for fine control over the font and rendering process.

· Draw images, optionally applying filtering operations.

· Apply operations such as compositing and transforming during any of the above rendering operations.

This chapter also explains less familiar concepts such as compositing.

Using 2D Graphics API to display complex charts
[image: image1.png]Yd v Yo

mmmmmmmmmmm

Using image-filtering operations
This chapter describes the concept of drawing on-screen and off-screen images, as well as surfaces and printer devices. This trail covers the most common uses of the Java 2D APIs and briefly describes some of the more advanced features.

Java 2D Rendering

The Java 2D™ API provides a uniform rendering model across different types of devices. At the application level, the rendering process is the same whether the target rendering device is a screen or a printer. When a component needs to be displayed, its paint or update method is automatically invoked with the appropriate Graphics context.

The Java 2D API includes the java.awt.Graphics2D class, which extends the Graphics class to provide access to the enhanced graphics and rendering features of the Java 2D API. These features include:

· Rendering the outline of any geometric primitive, using the stroke and paint attributes (draw method).

· Rendering any geometric primitive by filling its interior with the color or pattern specified by the paint attributes (fill method).

· Rendering any text string (the drawString method). The font attribute is used to convert the string to glyphs, which are then filled with the color or pattern specified by the paint attributes.

· Rendering the specified image (the drawImage method).

In addition, the Graphics2D class supports the Graphics rendering methods for particular shapes, such as drawOval and fillRect. All methods that are represented above can be divided into two groups:

1. Methods to draw a shape

2. Methods that affect rendering

The second group of the methods uses the state attributes that form the Graphics2D context for following purposes:

· To vary the stroke width

· To change how strokes are joined together

· To set a clipping path to limit the area that is rendered

· To translate, rotate, scale, or shear objects when they are rendered

· To define colors and patterns to fill shapes with

· To specify how to compose multiple graphics objects

To employ Java 2D API features in the application, cast the Graphics object passed into a component’s rendering method to a Graphics2D object. For example:

public void paint (Graphics g) {

 Graphics2D g2 = (Graphics2D) g;

 ...

}

As the following figure shows, the Graphics2D class rendering context contains several attributes.

	[image: image2.png]

	The pen attribute is applied to the outline of a shape. This stroke attribute enables you to draw lines with any point size and dashing pattern and apply end-cap and join decorations to a line.

	[image: image3.png]

	The fill attribute is applied to a shape's interior. This paint attribute enables you to fill shapes with solid colors, gradients, and patterns.

	[image: image4.png]Composite|

	The compositing attribute is used when rendered objects overlap existing objects.

	[image: image5.png]Shearing
Transform

	The transform attribute is applied during rendering to convert the rendered object from user space to device-space coordinates. Optional translation, rotation, scaling, or shearing transforms can also be applied through this attribute.

	[image: image6.png]

	The clip, type restricts rendering to the area within the outline of the Shape object used to define the clipping path. Any Shape object that is used to define the clip.

	[image: image7.png]Aa
Bb

	The font attribute is used to convert text strings to glyphs.

	[image: image8.png]Antaliasing

	Rendering hints specify preferences in the trade-offs between speed and quality. For example, you can specify whether antialiasing should be used, if this feature available. See also Controlling Rendering Quality.

.

When an attribute is set, the appropriate attribute object is passed. As the following example shows, to change the paint attribute to a blue-green gradient fill, you construct a GradientPaint object and then call the setPaint method.

gp = new GradientPaint(0f,0f,blue,0f,30f,green);

g2.setPaint(gp);

Controlling Rendering Quality

Use the Graphics2D class rendering hints attribute to specify whether you want objects to be rendered as quickly as possible or whether you prefer that the rendering quality be as high as possible.

To set or change the rendering hints attribute in the Graphics2D context, construct a RenderingHints object and pass it into Graphics2D by using the setRenderingHints method. If you just want to set one hint, you can call Graphics2D setRenderingHint and specify the key-value pair for the hint you want to set. (The key-value pairs are defined in the RenderingHints class.)

For example, to set a preference for antialiasing to be used if possible, you could use setRenderingHint:

 public void paint (graphics g){

Graphics2D g2 = (Graphics2D)g;

RenderingHints rh = new RenderingHints(

RenderingHints.KEY_TEXT_ANTIALIASING,

RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

g2.setRenderingHints(rh);

 ...

 }

Note: Not all platforms support modification of the rendering mode, so specifying rendering hints does not guarantee that they will be used.

RenderingHints supports the following types of hints:

	Hint
	Key
	Values

	Antialiasing
	KEY_ANTIALIASING
	VALUE_ANTIALIAS_ON
VALUE_ANTIALIAS_OFF
VALUE_ANTIALIAS_DEFAULT

	Alpha Interpolation
	KEY_ALPHA_INTERPOLATION
	VALUE_ALPHA_INTERPOLATION_QUALITY
VALUE_ALPHA_INTERPOLATION_SPEED
VALUE_ALPHA_INTERPOLATION_DEFAULT

	Color Rendering
	KEY_COLOR_RENDERING
	VALUE_COLOR_RENDER_QUALITY
VALUE_COLOR_RENDER_SPEED
VALUE_COLOR_RENDER_DEFAULT

	Dithering
	KEY_DITHERING
	VALUE_DITHER_DISABLE
VALUE_DITHER_ENABLE
VALUE_DITHER_DEFAULT

	Fractional Text Metrics
	KEY_FRACTIONALMETRICS
	VALUE_FRACTIONALMETRICS_ON
VALUE_FRACTIONALMETRICS_OFF
VALUE_FRACTIONALMETRICS_DEFAULT

	Image Interpolation
	KEY_INTERPOLATION
	VALUE_INTERPOLATION_BICUBIC
VALUE_INTERPOLATION_BILINEAR
VALUE_INTERPOLATION_NEAREST_NEIGHBOR

	Rendering
	KEY_RENDERING
	VALUE_RENDER_QUALITY
VALUE_RENDER_SPEED
VALUE_RENDER_DEFAULT

	Stroke Normalization Control
	KEY_STROKE_CONTROL
	VALUE_STROKE_NORMALIZE
VALUE_STROKE_DEFAULT
VALUE_STROKE_PURE

	Text Antialiasing
	KEY_TEXT_ANTIALIASING
	VALUE_TEXT_ANTIALIAS_ON
VALUE_TEXT_ANTIALIAS_OFF
VALUE_TEXT_ANTIALIAS_DEFAULT
VALUE_TEXT_ANTIALIAS_GASP
VALUE_TEXT_ANTIALIAS_LCD_HRGB
VALUE_TEXT_ANTIALIAS_LCD_HBGR
VALUE_TEXT_ANTIALIAS_LCD_VRGB
VALUE_TEXT_ANTIALIAS_LCD_VBGR

	LCD Text Contrast
	KEY_TEXT_LCD_CONTRAST
	Values should be a positive integer in the range 100 to 250. A lower value (eg 100) corresponds to higher contrast text when displaying dark text on a light background. A higher value (eg 200) corresponds to lower contrast text when displaying dark text on a light background. A typical useful value is in the narrow range 140-180. If no value is specified, a system or implementation default value will be applied.

Constructing Complex Shapes from Geometry Primitives

Constructive area geometry (CAG) is the process of creating new geometric shapes by performing boolean operations on existing ones. In the Java 2D™ API the Area class implements the Shape interface and supports the following boolean operations.

	[image: image9.png]

	Union
	[image: image10.png]

	Subtraction

	[image: image11.png]

	Intersection
	[image: image12.png]

	Exclusive-or (XOR)

Example: Areas

In this example Area objects construct a pear shape from several ellipses.

[image: image13.png]

The leaves are each created by performing an intersection on two overlapping circles.

leaf = new Ellipse2D.Double();

...

leaf1 = new Area(leaf);

leaf2 = new Area(leaf);

...

leaf.setFrame(ew-16, eh-29, 15.0, 15.0);

leaf1 = new Area(leaf);

leaf.setFrame(ew-14, eh-47, 30.0, 30.0);

leaf2 = new Area(leaf);

leaf1.intersect(leaf2);

g2.fill(leaf1);

...

leaf.setFrame(ew+1, eh-29, 15.0, 15.0);

leaf1 = new Area(leaf);

leaf2.intersect(leaf1);

g2.fill(leaf2);

Overlapping circles are also used to construct the stem through a subtraction operation.

stem = new Ellipse2D.Double();

...

stem.setFrame(ew, eh-42, 40.0, 40.0);

st1 = new Area(stem);

stem.setFrame(ew+3, eh-47, 50.0, 50.0);

st2 = new Area(stem);

st1.subtract(st2);

g2.fill(st1);

The body of the pear is constructed by performing a union operation on a circle and an oval.

circle = new Ellipse2D.Double();

oval = new Ellipse2D.Double();

circ = new Area(circle);

ov = new Area(oval);

...

circle.setFrame(ew-25, eh, 50.0, 50.0);

oval.setFrame(ew-19, eh-20, 40.0, 70.0);

circ = new Area(circle);

ov = new Area(oval);

circ.add(ov);

g2.fill(circ);

Default Rendering Attributes

The default values for the Graphics2D rendering attributes are:

Paint

The color of the Component.

Font

The Font of the Component.

Stroke

A square pen with a linewidth of 1, no dashing, miter segment joins and square end caps.

Transform
The getDefaultTransform for the GraphicsConfiguration of the Component.

Composite

The AlphaComposite.SRC_OVER rule.

Clip

No rendering Clip, the output is clipped to the Component.

Printer
import java.awt.*;

import java.awt.print.*;

import javax.print.attribute.*;

import javax.swing.UIManager;

class PrintDialogExample

{

public static void main(String args[])

{

PrinterJob pj = PrinterJob.getPrinterJob();

 if (pj.printDialog())

{

 try {pj.print();

}

 catch (PrinterException exc)

{

 System.out.println(exc);

 }

 }

}
javax.print package provides
[image: image14.png]Java Print Service API

| javax.print I | javax.print.attribute I

R X javax.print.attribute
[printavens | [Foen e e

