JDBC Database Access

Java Database Connectivity or in short JDBC is a technology that enables the java program to manipulate data stored into the database.

The JDBC™ API was designed to keep simple things simple. This means that the JDBC makes everyday database tasks easy. using JDBC to execute common SQL statements, and perform other objectives common to database applications.

Steps

1. Connect to a data source, like a database

2. Send queries and update statements to the database

3. Retrieve and process the results received from the database in answer to your query

The following simple code fragment gives a simple example of these three steps:

public void connectToAndQueryDatabase(String username, String password) {

 Connection con = DriverManager.getConnection

 ("jdbc:myDriver:myDatabase", username, password);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

 while (rs.next()) {

 int x = rs.getInt("a");

 String s = rs.getString("b");

 float f = rs.getFloat("c");

 }

 // ...

Statement st=connection.createStatement();
int rowcount=st.executeUpdate("insert into employee values("tim"));
int rowcoutn=st.executeUpdate("insert into salary values(20000.0);
Savepoint sv=connection.setSavePoint("savepoint"); //create save point for inserts
int rowcount=st.executeUpdate("delete from employee");
connection.rollback(sv); //discard the delete statement but keeps the inserts
connection.commit(); //inserts are now permanent

import java.sql.*;

import javax.sql.*;

public class jdbcdemo{

public static void main(String args[]){

String dbtime;

String dbUrl = "jdbc:mysql://your.database.domain/yourDBname";

String dbClass = "com.mysql.jdbc.Driver";

String query = "Select * FROM users";

try {

Class.forName("com.mysql.jdbc.Driver");

Connection con = DriverManager.getConnection (dbUrl);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

dbtime = rs.getString(1);

System.out.println(dbtime);

} //end while

con.close();

} //end try

catch(ClassNotFoundException e) {

e.printStackTrace();

}

catch(SQLException e) {

e.printStackTrace();

}

} //end main

} //end class

import java.sql.*;

class JdbcUrl{

public static void main(String[] args) {

try {

//URL of the database(ankdb)

 String connectionURL = "jdbc:mysql://192.168.10.13:3306/ankdb";

// declare a connection by using Connection interface

 Connection connection = null;

// declare object of Statement interface that uses for

//executing sql statements.

 Statement statement = null;

//declare a resultset that uses as a table for output data

//from the table.

 ResultSet rs = null;

 connection = DriverManager.getConnection(connectionURL,

 "root", "root");

 statement = connection.createStatement();

 System.out.println(" Showing row of student table");

 // sql query to retrieve values from the specified table.

 String QueryString = "SELECT * from student";

 rs = statement.executeQuery(QueryString);

 while (rs.next()) {

 System.out.println(rs.getInt(1) + "\t\t"+ rs.getString(2)

+"\t\t"+ rs.geString(3)+"\n");

 }

// close all the connections.

 rs.close();

 statement.close();

 connection.close();

 }

 catch (Exception ex) {

 System.out.println("Unable to connect to batabase.");

 }

}

}
What is JDBC?

JDBC is Java application programming interface that allows the Java programmers to access database management system from Java code. It was developed by JavaSoft, a subsidiary of Sun Microsystems.
JDBC has been developed under the Java Community Process that allows multiple implementations to exist and be used by the same application. JDBC provides methods for querying and updating the data in Relational Database Management system such as SQL, Oracle etc.

The Java application programming interface provides a mechanism for dynamically loading the correct Java packages and drivers and registering them with the JDBC Driver Manager that is used as a connection factory for creating JDBC connections which supports creating and executing statements such as SQL INSERT, UPDATE and DELETE. Driver Manager is the backbone of the jdbc architecture.

JDBC helps the programmers to write java applications that manage these three programming activities:

1. It helps us to connect to a data source, like a database.
2. It helps us in sending queries and updating statements to the database and
3. Retrieving and processing the results received from the database in terms of answering to your query.

Product Components of JDBC

JDBC is consists of four Components:
1. The JDBC API,
2. JDBC Driver Manager,
3. The JDBC Test Suite
4. JDBC-ODBC Bridge.

1. The JDBC API.
The JDBC application programming interface provides the facility for accessing the relational database from the Java programming language. The API technology provides the industrial standard for independently connecting Java programming language and a wide range of databases. The user not only execute the SQL statements, retrieve results, and update the data but can also access it anywhere within a network because of it's "Write Once, Run Anywhere" (WORA) capabilities.

Due to JDBC API technology, user can also access other tabular data sources like spreadsheets or flat files even in the a heterogeneous environment. JDBC application programmming interface is a part of the Java platform that have included Java Standard Edition (Java SE) and the Java Enterprise Edition (Java EE) in itself.

The JDBC API has four main interface:

The latest version of JDBC 4.0 application programming interface is divided into two packages

i-) java.sql

ii-) javax.sql.

2. The JDBC Driver Manager.

The JDBC Driver Manager is a very important class that defines objects which connect Java applications to a JDBC driver. Usually Driver Manager is the backbone of the JDBC architecture. It's very simple and small that is used to provide a means of managing the different types of JDBC database driver running on an application. The main responsibility of JDBC database driver is to load all the drivers found in the system properly as well as to select the most appropriate driver from opening a connection to a database. The Driver Manager also helps to select the most appropriate driver from the previously loaded drivers when a new open database is connected.

3. The JDBC Test Suite.

The function of JDBC driver test suite is to make ensure that the JDBC drivers will run user's program or not . The test suite of JDBC application program interface is very useful for testing a driver based on JDBC technology during testing period. It ensures the requirement of Java Platform Enterprise Edition (J2EE).

4. The JDBC-ODBC Bridge.

The JDBC-ODBC bridge, also known as JDBC type 1 driver is a database driver that utilize the ODBC driver to connect the database. This driver translates JDBC method calls into ODBC function calls. The Bridge implements Jdbc for any database for which an Odbc driver is available. The Bridge is always implemented as the sun.jdbc.odbc Java package and it contains a native library used to access ODBC.

Now we can conclude this topic: This first two component of JDBC, the JDBC API and the JDBC Driver Manager manages to connect to the database and then build a java program that utilizes SQL commands to communicate with any RDBMS. On the other hand, the last two components are used to communicate with ODBC or to test web application in the specialized environment.

JDBC Architecture

Two-tier and Three-tier Processing Models

The JDBC API supports both two-tier and three-tier processing models for database access.

wo-tier and three-tier processing models for database access.

Two-tier Architecture for Data Access.

In the two-tier model, a Java applet or application talks directly to the data source. This requires a JDBC driver that can communicate with the particular data source being accessed. A user's commands are delivered to the database or other data source, and the results of those statements are sent back to the user. The data source may be located on another machine to which the user is connected via a network. This is referred to as a client/server configuration, with the user's machine as the client, and the machine housing the data source as the server. The network can be an intranet, which, for example, connects employees within a corporation, or it can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which then sends the commands to the data source. The data source processes the commands and sends the results back to the middle tier, which then sends them to the user. MIS directors find the three-tier model very attractive because the middle tier makes it possible to maintain control over access and the kinds of updates that can be made to corporate data. Another advantage is that it simplifies the deployment of applications. Finally, in many cases, the three-tier architecture can provide performance advantages.

Three-tier Architecture for Data Access.
[image: image1.png]Teva eppletor
HTML bowser

Clent machine (GUD)

e o, corpa,or ater cane

pplicaton Server
Vv

T5BC

Server machine
(usinessJogic)

F " DBuS proprictary protocal

DEMS

Database server

Until recently, the middle tier has often been written in languages such as C or C++, which offer fast performance. However, with the introduction of optimizing compilers that translate Java bytecode into efficient machine-specific code and technologies such as Enterprise JavaBeans™, the Java platform is fast becoming the standard platform for middle-tier development. This is a big plus, making it possible to take advantage of Java's robustness, multithreading, and security features.

With enterprises increasingly using the Java programming language for writing server code, the JDBC API is being used more and more in the middle tier of a three-tier architecture. Some of the features that make JDBC a server technology are its support for connection pooling, distributed transactions, and disconnected rowsets. The JDBC API is also what allows access to a data source from a Java middle tier.

Integrity Rules

Relational tables follow certain integrity rules to ensure that the data they contain stay accurate and are always accessible. First, the rows in a relational table should all be distinct. If there are duplicate rows, there can be problems resolving which of two possible selections is the correct one. For most DBMSs, the user can specify that duplicate rows are not allowed, and if that is done, the DBMS will prevent the addition of any rows that duplicate an existing row.

A second integrity rule of the traditional relational model is that column values must not be repeating groups or arrays. A third aspect of data integrity involves the concept of a null value. A database takes care of situations where data may not be available by using a null value to indicate that a value is missing. It does not equate to a blank or zero. A blank is considered equal to another blank, a zero is equal to another zero, but two null values are not considered equal.

When each row in a table is different, it is possible to use one or more columns to identify a particular row. This unique column or group of columns is called a primary key. Any column that is part of a primary key cannot be null; if it were, the primary key containing it would no longer be a complete identifier. This rule is referred to as entity integrity.

Metadata

Databases store user data, and they also store information about the database itself. Most DBMSs have a set of system tables, which list tables in the database, column names in each table, primary keys, foreign keys, stored procedures, and so forth. Each DBMS has its own functions for getting information about table layouts and database features. JDBC provides the interface DatabaseMetaData, which a driver writer must implement so that its methods return information about the driver and/or DBMS for which the driver is written. For example, a large number of methods return whether or not the driver supports a particular functionality. This interface gives users and tools a standardized way to get metadata.

In general, developers writing tools and drivers are the ones most likely to be concerned with metadata.

Understanding the JDBC Architecture

JDBC is an API specification developed by Sun Microsystems that defines a uniform interface for accessing various relational databases. JDBC is a core part of the Java platform and is included in the standard JDK distribution.

The primary function of the JDBC API is to provide a means for the developer to issue SQL statements and process the results in a consistent, database-independent manner. JDBC provides rich, object-oriented access to databases by defining classes and interfaces that represent objects such as:

1. Database connections

2. SQL statements

3. Result Set

4. Database metadata

5. Prepared statements

6. Binary Large Objects (BLOBs)

7. Character Large Objects (CLOBs)

8. Callable statements

9. Database drivers

10. Driver manager

The JDBC API uses a Driver Manager and database-specific drivers to provide transparent connectivity to heterogeneous databases. The JDBC driver manager ensures that the correct driver is used to access each data source. The Driver Manager is capable of supporting multiple concurrent drivers connected to multiple heterogeneous databases. The location of the driver manager with respect to the JDBC drivers and the servlet is shown in Figure 1.

Layers of the JDBC Architecture
[image: image2.png]Java Servelet,
Applet, or st JDBC APl oy JI)’f;‘ﬁ\Drwer
ger
Application
JDBC Driver JDBC Driver JDBC Driver
Oracle saL Server ODBC Data
Source

A JDBC driver translates standard JDBC calls into a network or database protocol or into a database library API call that facilitates communication with the database. This translation layer provides JDBC applications with database independence. If the back-end database changes, only the JDBC driver need be replaced with few code modifications required. There are four distinct types of JDBC drivers.

Type 1 JDBC-ODBC Bridge. Type 1 drivers act as a "bridge" between JDBC and another database connectivity mechanism such as ODBC. The JDBC- ODBC bridge provides JDBC access using most standard ODBC drivers. This driver is included in the Java 2 SDK within the sun.jdbc.odbc package. In this driver the java statements are converted to a jdbc statements. JDBC statements calls the ODBC by using the JDBC-ODBC Bridge. And finally the query is executed by the database. This driver has serious limitation for many applications. (See Figure 2.)

Type 1 JDBC Architecture
[image: image3.png]JDBC Serviet
(Java)

Type 1 JDBC

™= Driver (Java)

JDBC-ODBC
|t Library
(Native Coce)

Database

ODBC Driver
™= (Native Code)

Type 2 Java to Native API. Type 2 drivers use the Java Native Interface (JNI) to make calls to a local database library API. This driver converts the JDBC calls into a database specific call for databases such as SQL, ORACLE etc. This driver communicates directly with the database server. It requires some native code to connect to the database. Type 2 drivers are usually faster than Type 1 drivers. Like Type 1 drivers, Type 2 drivers require native database client libraries to be installed and configured on the client machine. (See Figure 3.)

Type 2 JDBC Architecture
[image: image4.png]JDBC Serviet
(Java)

Type 2 JDBC
Driver (Java)

Database Library
(Native Code)

Database

Type 3 Java to Network Protocol Or All- Java Driver. Type 3 drivers are pure Java drivers that use a proprietary network protocol to communicate with JDBC middleware on the server. The middleware then translates the network protocol to database-specific function calls. Type 3 drivers are the most flexible JDBC solution because they do not require native database libraries on the client and can connect to many different databases on the back end. Type 3 drivers can be deployed over the Internet without client installation. (See Figure 4.)
Java-------> JDBC statements------> SQL statements ------> databases.

Type 3 JDBC Architecture
[image: image5.png]JDBC Serviet
(Java)

Type 3 JDBC
Driver (Java)

Network
Protocol

Type 4 Java to Database Protocol. Type 4 drivers are pure Java drivers that implement a proprietary database protocol (like Oracle's SQL*Net) to communicate directly with the database. Like Type 3 drivers, they do not require native database libraries and can be deployed over the Internet without client installation. One drawback to Type 4 drivers is that they are database specific. Unlike Type 3 drivers, if your back-end database changes, you may save to purchase and deploy a new Type 4 driver (some Type 4 drivers are available free of charge from the database manufacturer). However, because Type drivers communicate directly with the database engine rather than through middleware or a native library, they are usually the fastest JDBC drivers available. This driver directly converts the java statements to SQL statements.

(See Figure 5.)

Type 4 JDBC Architecture
[image: image6.png]JDBC Serviet
(Java)

Type 4 JDBC
Driver (Java)

—@abase

So, you may be asking yourself, "Which is the right type of driver for your application?" Well, that depends on the requirements of your particular project. If you do not have the opportunity or inclination to install and configure software on each client, you can rule out Type 1 and Type 2 drivers.

However, if the cost of Type 3 or Type 4 drivers is prohibitive, Type 1 and type 2 drivers may become more attractive because they are usually available free of charge. Price aside, the debate will often boil down to whether to use Type 3 or Type 4 driver for a particular application. In this case, you may need to weigh the benefits of flexibility and interoperability against performance. Type 3 drivers offer your application the ability to transparently access different types of databases, while Type 4 drivers usually exhibit better performance and, like Type 1 and Type 2 drivers, may be available free if charge from the database manufacturer.

JDBC Driver and Its Types

JDBC Driver Manager

The JDBC DriverManager class defines objects which can connect Java applications to a JDBC driver. DriverManager has traditionally been the backbone of the JDBC architecture. It is quite small and simple.

This is a very important class. Its main purpose is to provide a means of managing the different types of JDBC database driver. On running an application, it is the DriverManager's responsibility to load all the drivers found in the system property jdbc. drivers. For example, this is where the driver for the Oracle database may be defined. This is not to say that a new driver cannot be explicitly stated in a program at runtime which is not included in jdbc.drivers. When opening a connection to a database it is the DriverManager' s role to choose the most appropriate driver from the previously loaded drivers.

The JDBC API defines the Java interfaces and classes that programmers use to connect to databases and send queries. A JDBC driver implements these interfaces and classes for a particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a particular DBMS before it actually connects to a database. The JDBC DriverManager class then sends all JDBC API calls to the loaded driver.

JDBC Driver

This topic defines the Java(TM) Database Connectivity (JDBC) driver types. Driver types are used to categorize the technology used to connect to the database. A JDBC driver vendor uses these types to describe how their product operates. Some JDBC driver types are better suited for some applications than others.

Types of JDBC drivers

This topic defines the Java(TM) Database Connectivity (JDBC) driver types. Driver types are used to categorize the technology used to connect to the database. A JDBC driver vendor uses these types to describe how their product operates. Some JDBC driver types are better suited for some applications than others.

 There are four types of JDBC drivers known as:

· JDBC-ODBC bridge plus ODBC driver, also called Type 1.

· Native-API, partly Java driver, also called Type 2.

· JDBC-Net, pure Java driver, also called Type 3.

· Native-protocol, pure Java driver, also called Type 4.

Types
There are commercial and free drivers available for most relational database servers. These drivers fall into one of the following types:

· Type 1 that calls native code of the locally available ODBC driver.

· Type 2 that calls database vendor native library on a client side. This code then talks to database over network.

· Type 3, the pure-java driver that talks with the server-side middleware that then talks to database.

· Type 4, the pure-java driver that uses database native protocol.

Here are examples of host database types which Java can convert to with a function.

	setXXX() Methods

	Oracle Datatype
	setXXX()

	CHAR
	setString()

	VARCHAR2
	setString()

	NUMBER
	setBigDecimal()

	
	setBoolean()

	
	setByte()

	
	setShort()

	
	setInt()

	
	setLong()

	
	setFloat()

	
	setDouble()

	INTEGER
	setInt()

	FLOAT
	setDouble()

	CLOB
	setClob()

	BLOB
	setBlob()

	RAW
	setBytes()

	LONGRAW
	setBytes()

	DATE
	setDate()

	
	setTime()

	
	setTimestamp()

Type 1 Driver- the JDBC-ODBC bridge

The JDBC type 1 driver, also known as the JDBC-ODBC bridge is a database driver implementation that employs the ODBC driver to connect to the database. The driver converts JDBC method calls into ODBC function calls. The bridge is usually used when there is no pure-Java driver available for a particular database.

The driver is implemented in the sun.jdbc.odbc.JdbcOdbcDriver class and comes with the Java 2 SDK, Standard Edition. The driver is platform-dependent as it makes use of ODBC which in turn depends on native libraries of the operating system. Also, using this driver has got other dependencies such as ODBC must be installed on the computer having the driver and the database which is being connected to must support an ODBC driver. Hence the use of this driver is discouraged if the alternative of a pure-Java driver is available.

Type 1 is the simplest of all but platform specific i.e only to Microsoft platform.

A JDBC-ODBC bridge provides JDBC API access via one or more ODBC drivers. Note that some ODBC native code and in many cases native database client code must be loaded on each client machine that uses this type of driver. Hence, this kind of driver is generally most appropriate when automatic installation and downloading of a Java technology application is not important. For information on the JDBC-ODBC bridge driver provided by Sun, see JDBC-ODBC Bridge Driver.

Type 1 drivers are "bridge" drivers. They use another technology such as Open Database Connectivity (ODBC) to communicate with a database. This is an advantage because ODBC drivers exist for many Relational Database Management System (RDBMS) platforms. The Java Native Interface (JNI) is used to call ODBC functions from the JDBC driver.

A Type 1 driver needs to have the bridge driver installed and configured before JDBC can be used with it. This can be a serious drawback for a production application. Type 1 drivers cannot be used in an applet since applets cannot load native code.

Functions:
1. Translates query obtained by JDBC into corresponding ODBC query, which is then handled by the ODBC driver.

2. Sun provides a JDBC-ODBC Bridge driver. sun.jdbc.odbc.JdbcOdbcDriver. This driver is native code and not Java, and is closed
 source.

3. Client -> JDBC Driver -> ODBC Driver -> Database

4. There is some overhead associated with the translation work to go from JDBC to ODBC.

Advantages:

Almost any database for which ODBC driver is installed, can be accessed.

Disadvantages:
1. Performance overhead since the calls have to go through the JDBC overhead bridge to the ODBC driver, then to the native database connectivity interface.

2. The ODBC driver needs to be installed on the client machine.

3. Considering the client-side software needed, this might not be suitable for applets.

Type 2 Driver - the Native-API Driver

The JDBC type 2 driver, also known as the Native-API driver is a database driver implementation that uses the client-side libraries of the database. The driver converts JDBC method calls into native calls of the database API.

The type 2 driver is not written entirely in Java as it interfaces with non-Java code that makes the final database calls.
The driver is compiled for use with the particular operating system. For platform interoperability, the Type 4 driver, being
a full-Java implementation, is preferred over this driver.

A native-API partly Java technology-enabled driver converts JDBC calls into calls on the client API for Oracle, Sybase, Informix, DB2, or other DBMS. Note that, like the bridge driver, this style of driver requires that some binary code be loaded on each client machine.

However the type 2 driver provides more functionality and performance than the type 1 driver as it does not have the overhead of the additional ODBC function calls.

Type 2 drivers use a native API to communicate with a database system. Java native methods are used to invoke the API functions that perform database operations. Type 2 drivers are generally faster than Type 1 drivers.

Type 2 drivers need native binary code installed and configured to work. A Type 2 driver also uses the JNI. You cannot use a Type 2 driver in an applet since applets cannot load native code. A Type 2 JDBC driver may require some Database Management System (DBMS) networking software to be installed.

The Developer Kit for Java JDBC driver is a Type 2 JDBC driver.

Functions:
1. This type of driver converts JDBC calls into calls to the client API for that database.

2. Client -> JDBC Driver -> Vendor Client DB Library -> Database

Advantage

Better performance than Type 1 since no jdbc to odbc translation is needed.

Disadvantages
1. The vendor client library needs to be installed on the client machine.

2. Cannot be used in internet due the client side software needed.

3. Not all databases give the client side library.

Type 3 driver - the Network-Protocol Driver

The JDBC type 3 driver, also known as the network-protocol driver is a database driver implementation which makes use of a middle-tier between the calling program and the database. The middle-tier (application server) converts JDBC calls directly or indirectly into the vendor-specific database protocol.

This differs from the type 4 driver in that the protocol conversion logic resides not at the client, but in the middle-tier. However, like type 4 drivers, the type 3 driver is written entirely in Java.

The same driver can be used for multiple databases. It depends on the number of databases the middleware has been configured to support. The type 3 driver is platform-independent as the platform-related differences are taken care by the middleware. Also, making use of the middleware provides additional advantages of security and firewall access.

A net-protocol fully Java technology-enabled driver translates JDBC API calls into a DBMS-independent net protocol which is then translated to a DBMS protocol by a server. This net server middleware is able to connect all of its Java technology-based clients to many different databases. The specific protocol used depends on the vendor. In general, this is the most flexible JDBC API alternative. It is likely that all vendors of this solution will provide products suitable for Intranet use. In order for these products to also support Internet access they must handle the additional requirements for security, access through firewalls, etc., that the Web imposes. Several vendors are adding JDBC technology-based drivers to their existing database middleware products.

These drivers use a networking protocol and middleware to communicate with a server. The server then translates the protocol to DBMS function calls specific to DBMS.

Type 3 JDBC drivers are the most flexible JDBC solution because they do not require any native binary code on the client. A Type 3 driver does not need any client installation.

Functions:
1. Follows a three tier communication approach.

2. Can interface to multiple databases - Not vendor specific.

3. The JDBC Client driver written in java, communicates with a middleware-net-server using a database independent protocol, and then this net server translates this request into database commands for that database.

4. Thus the client driver to middleware communication is database independent.

5. Client -> JDBC Driver -> Middleware-Net Server -> Any Database

Advantages
1. Since the communication between client and the middleware server is database independent, there is no need for the vendor db library on the client machine. Also the client to middleware need'nt be changed for a new database.

2. The Middleware Server (Can be a full fledged J2EE Application server) can provide typical middleware services like caching (connections, query results, and so on), load balancing, logging, auditing etc..

3. eg. for the above include jdbc driver features in Weblogic.

4. Can be used in internet since there is no client side software needed.

5. At client side a single driver can handle any database.(It works provided the middlware supports that database!!)

Disadvantages
1. Requires database-specific coding to be done in the middle tier.

2. An extra layer added may result in a time-bottleneck. But typically this is overcome by providing efficient middleware
 services described above.

Type 4 - the Native-Protocol Driver

The JDBC type 4 driver, also known as the native-protocol driver is a database driver implementation that converts JDBC calls directly into the vendor-specific database protocol.

The type 4 driver is written completely in Java and is hence platform independent. It is installed inside the Java Virtual Machine of the client. It provides better performance over the type 1 and 2 drivers as it does not have the overhead of conversion of calls into ODBC or database API calls. Unlike the type 1 and 2 drivers, it does not need associated software to work.

A native-protocol fully Java technology-enabled driver converts JDBC technology calls into the network protocol used by DBMSs directly. This allows a direct call from the client machine to the DBMS server and is a practical solution for Intranet access. Since many of these protocols are proprietary the database vendors themselves will be the primary source for this style of driver. Several database vendors have these in progress.

As the database protocol is vendor-specific, separate drivers, usually vendor-supplied, need to be used to connect to the database.

A Type 4 driver uses Java to implement a DBMS vendor networking protocol. Since the protocols are usually proprietary, DBMS vendors are generally the only companies providing a Type 4 JDBC driver.

Type 4 drivers are all Java drivers. This means that there is no client installation or configuration. However, a Type 4 driver may not be suitable for some applications if the underlying protocol does not handle issues such as security and network connectivity well.

The IBM Toolbox for Java JDBC driver is a Type 4 JDBC driver, indicating that the API is a pure Java networking protocol driver.

Functions
1. Type 4 drivers are entirely written in Java that communicate directly with a vendor's database through socket connections. No translation or middleware layers, are required, improving performance.

2. The driver converts JDBC calls into the vendor-specific database protocol so that client applications can communicate directly with the database server.

3. Completely implemented in Java to achieve platform independence.

4. e.g include the widely used Oracle thin driver - oracle.jdbc.driver. OracleDriver which connect to jdbc:oracle:thin URL format.

5. Client Machine -> Native protocol JDBC Driver -> Database server

Advantages

These drivers don't translate the requests into db request to ODBC or pass it to client api for the db, nor do they need a middleware layer for request indirection. Thus the performance is considerably improved.

Disadvantage

At client side, a separate driver is needed for each database.

DBC Versions

1). The JDBC 1.0 API.
2). The JDBC 1.2 API.
3). The JDBC 2.0 Optional Package API.
4). The JDBC 2.1 core API.
5) The JDBC 3.0 API.

6) The JDBC 4.0 API.

Features of JDBC 1.0 API
The JDBC 1.0 API was the first officially JDBC API launched consists of the following java classes and interfaces that you can open connections to particular databases.

This version includes a completely redesigned administration console with an enhanced graphical interface to manage and monitor distributed virtual databases.

Features of JDBC 1.2 API
1). It supports Updatabale ResultSets.

2). The DatabaseMetaData code has been refactored to provide more transparency with regard to the underlying database engine.

3) New pass through schedulers for increased performance.

Features of The JDBC 2.0 Optional Pacakage API
1). The use of DataSource interface for making a connection.

2). Use of JNDI to specify and obtain database connections.

3). It allows us to use Pooled connections, that is we can reuse the connections.

4). In this version the distrbuted transactions is possible.

5). It provides a way of handling and passing data using Rowset technology.

Features of the JDBC 2.1 core API.

1). Scroll forward and backward in a result set or has the ability to move to a specific row.

2). Instead of using SQL commands, we can make updates to a database tables using methods in the Java programming language

3). We can use multiple SQL statements in a a database as a unit, or batch.

4). It uses the SQL3 datatypes as column values. SQL3 types are Blob, Clob, Array, Structured type, Ref.

5). Increased support for storing persistent objects in the java programming language.

6). Supports for time zones in Date, Time, and Timestamp values.

7). Full precision for java.math.BigDecimal values.

Features of JDBC 3.0 API
1). Reusabilty of prepared statements by connection pools.

2). In this version there is number of properties defined for the ConnectionPoolDataSource. These properties can be used to describe how the PooledConnection objects created by DataSource objects should be pooled.

3) A new concept has been added to this API is of savepoints.

4). Retrieval of parameter metadata.

5). It has added a means of retrieving values from columns containing automatically generated values.

6). Added a new data type i.e. java.sql.BOOLEAN.

7). Passing parameters to CallableStatement.

8). The data in the Blob and Clob can be altered.

9). DatabaseMetaData API has been added.

Features of JDBC 4.0 :
1). Auto- loading of JDBC driver class.

2). Connection management enhancements.

3.) Support for RowId SAL type.

4). SQL exception handling enhancements.

5). DataSet implementation of SQl using Annotations.

6). SQL XML support

Top of Form

Relational Database Concepts

An important part of every business is to keep records. We need to keep records of our customers, the employees of our company, the emails etc. To keep all the data indivually is quite difficult and hectic job, because whenever if we need the record of a particular customer or an employee we need to search manually. It takes lot of time and still not reliable. Here comes the concept of databases.

What is database?
A database is an organized collection of information. A simple example of a database are like your telephone directory, recipe book etc.
A Relational model is the basis for any relational database management system (RDBMS). A relational model has mainly three components:

1. A collection of objects or relations,.

2. Operators that act on the objects or relations.

3. Data integrity methods.

To design a database we need three things:

1. Table

2. Rows

3. Columns

A table is one of the most important ingredient to design the database. It is also known as a relation, is a two dimensional structure used to hold related information. A database consists of one or more tables.

A table contains rows : Rows is a collection of instance of one thing, such as the information of one employee.

A table contains the columns: Columns contains all the information of a single type. Each column in a table is a category of information referred to as a field.

One item of data, such as single phone number of a person is called as a Data Value.

ACID Properties:
ACID properties are one of the important concept for databases. ACID stands for Atomicity, Consistency, Isolation, and Durability. These properties of a DBMS allow safe sharing of data. Without these properties the inaccuracy in the data will be huge. With the help of the ACID properties the accuracy can be maintained.

Normalization:
Normalization is a design technique which helps the to design the relational databases. Normalization is essentially a two step process that puts data into tabular form by removing redundant data from the relational tables. A basic goal of normalization is to create a set of relational tables that are free of redundant data and the data should be consistent. Normalization has been divided into following forms.

1. First Normal Form: A relational table, by definition are in first normal form. All values of the columns are atomic. It means that it contains no repeating values.

2. A relationl table is in second normal form if it is in 1NF and every non- key column is fully dependent upon the primary key.

3. A relational table is in third normal form (3NF) if it is already in 2NF and every non- key column is non transitively dependent upon its primary key. The advantage of having table in 3NF is that it eliminates redundant data which in turn saves space and reduces manipulation anomalies.

Accessing Databases Using Java and JDBC
Posted on: August 28, 2010 at 12:00 AM
This article will show how a Java Application can access database and then list tables in it.
Accessing Database using Java and JDBC

Accessing Database using Java and JDBC

Database plays an important role in storing large amount of data in a pattern. Here we are going develop and example to access the database using Java and JDBC. For this, firstly we need to establish a connection between database and java file with the help of various types of APIs, interfaces and methods. We are using MySQL database.

Connection: This interface specifies connection with specific databases like: MySQL, Ms-Access, Oracle etc and java files. The SQL statements are executed within the context of this interface.

Class.forName(String driver): It loads the driver.

DriverManager: This class controls a set of JDBC drivers. Each driver has to be register with this class.

getConnection(String url, String userName, String password): This method establishes a connection to specified database url. It is having three arguments:
 url: - Database url where stored or created your database
 username: - User name of MySQL
 password: -Password of MySQL

getMetaData(): This is a method of Connection interface. It retrieves the metadata of the database.

DataBaseMetaData: This interface gives information about the database like number of tables in the database, columns of the table etc.

getTables(null, null, "%", null): This method provides the description of the tables available in the given catalog. As we have set other parameters null, so it will provide only table names.

Here is the code:
	import java.sql.*;

public class AccessDatabases {
 public static void main(String[] args) {
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection con = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "root");
 Statement st = con.createStatement();
 DatabaseMetaData meta = con.getMetaData();
 ResultSet rs = meta.getTables(null, null, "%", null);
 String tableNames = "";
 while (rs.next()) {
 tableNames = rs.getString(3);
 System.out.println(tableNames);
 }
 } catch (Exception e) {
 }
 }
}

In this section we studies how to connect to database and then list all the tables in the database. We have used MySQL database server.

Driver Manager Class

The JDBC Driver Manager is a very important class that defines objects which connect Java applications to a JDBC driver. Usually Driver Manager is the backbone of the JDBC architecture. It's very simple and small that is used to provide a means of managing the different types of JDBC database driver running on an application. The main responsibility of JDBC database driver is to load all the drivers found in the system properly as well as to select the most appropriate driver from opening a connection to a database. The Driver Manager also helps to select the most appropriate driver from the previously loaded drivers when a new open database is connected.

The DriverManager class works between the user and the drivers. The task of the DriverManager class is to keep track of the drivers that are available and handles establishing a connection between a database and the appropriate driver. It even keeps track of the driver login time limits and printing of log and tracing messages. This class is mainly useful for the simple application, the most frequently used method of this class is DriverManager.getConnetion(). We can know by the name of the method that this method establishes a connection to a database.

The DriverManager class maintains the list of the Driver classes. Each driver has to be get registered in the DriverManager class by calling the method DriverManager.registerDriver().

By calling the Class.forName() method the driver class get automatically loaded. The driver is loaded by calling the Class.forName() method. JDBC drivers are designed to tell the DriverManager about themselves automatically when their driver implementation class get loads.

This class has many methods. Some of the commonly used methods are given below:

1. deregisterDriver(Driver driver) : It drops the driver from the list of drivers registered in the DriverManager class.
2. registerDriver(Driver driver) : It registers the driver with the DriverManager class.
3. getConnection(String url) : It tries to establish the connection to a given database URL.
4. getConnection(String url, Sting user, String password) : It tries to establish the connection to a given database URL.
5. getConnection(String url, Properties info) : It tries to establish the connection to a given database URL.
6. getDriver(String url) : It attempts to locate the driver by the given string.
7. getDrivers() : It retrieves the enumeration of the drivers which has been registered with the DriverManager class.

JDBC Mysql Connection String

In this Tutorial we want to explain you a code that makes you to understand JDBC MysqlConnection String. The code include a class JdbcMysqlConnectionString,Inside this class we have a main method that follow the list of steps -

1)The first step is to import a package java.sql.* - This provides you a network interface that communicate between front end application in java and database.

2)Loading a driver is the next step by calling a class class.forname() and accept driver class as argument.

3)DriverManager.getConnection() - This is used to built a connection between url and database.

Finally the print ln print the connection value, username and password. In case there is an exception in try block, the subsequent catch block caught and handle the exception occurred in try block.

4)e,printStacktrace() - This method print the list of all methods that are currently executed at that time. It also contain message string information about the error.

JdbcMysqlConnectionString.java.java
import java.sql.*;

public class JdbcMysqlConnectionString {

static public final String driver = "com.mysql.jdbc.Driver";
static public final String connection =
"jdbc:mysql://localhost:3306/komal";
static public final String user = "root";
static public final String password = "root";

public static void main(String args[]) {
try {
Class.forName(driver);
Connection con =
DriverManager.getConnection(connection, user, password);

System.out.println("Jdbc Mysql Connection String :");
System.out.println(connection);

System.out.println("User Name :" + user);
System.out.println("Password :" + password);

if (!con.isClosed()) {
con.close();
}

} catch (Exception e) {
e.printStackTrace();
}
}
}
Mapping MySQL Data Types in Java

Data types of MySQL and Java programming language are not same, its need some mechanism for transferring data between an database using MySQL data types and a application using Java data types. We need to provide Java mappings for the common MySQL data types. We have to confirm that we have proper type information then only we can correctly store and retrieve parameters and recover results from MySQL statements.

There is no particular reason that the Java data type needs to be exactly isomorphic to the MySQL data type. For example, Java String don't precisely match any of the MySQL data CHAR type, but it gives enough type information to represent CHAR, VARCHAR or LONGVARCHAR successfully.

The following table represent the default Java mapping for various common MySQL data types:
	MySQL Type
	Java Type

	CHAR
	String

	VARCHAR
	String

	LONGVARCHAR
	String

	NUMERIC
	java.math.BigDecimal

	DECIMAL
	java.math.BigDecimal

	BIT
	boolean

	TINYINT
	byte

	SMALLINT
	short

	INTEGER
	int

	BIGINT
	long

	REAL
	float

	FLOAT
	double

	DOUBLE
	double

	BINARY
	byte []

	VARBINARY
	byte []

	LONGVARBINARY
	byte []

	DATE
	java.sql.Date

	TIME
	java.sql.Time

	TIMESTAMP
	java.sql.Tiimestamp

1. CHAR, VARCHAR and LONGVARCHAR
MySQL data types CHAR, VARCHAR, LONGVARCHAR are closely related. CHAR represents a small, fixed-length character string, VARCHAR represents a small, variable-length character string, and LONGVARCHAR represents a large, variable-length character string. There is no need for Java programmer to distinguish these three MySQL data types. These can be expressed identically in Java. These data types could be mapped in Java to either String or char[]. But String seemed more appropriate type for normal use. Java String class provide a method to convert a String into char[] and a constructor for converting a char[] into a String.

The method ResultSet.getString allocates and returns a new String. It is suitable for retrieving data from CHAR, VARCHAR and LONGVARCHAR fields. This is suitable for retrieving normal data, but LONGVARCHAR MySQL type can be used to store multi-megabyte strings. So that Java programmers needs a way to retrieve the LONGVARCHAR value in chunks. To handle this situation, ResultSet interface have two methods for allowing programmers to retrieve a LONGVARCHAR value as a Java input stream from which they can subsequently read data in whatever size chunks they prefer. These methods are getAsciiStream and getCharacterStream, which deliver the data stored in a LONGVARCHAR column as a stream of ASCII or Unicode characters.

2. NUMERIC and DECIMAL
The NUMERIC and DECIMAL MySQL data types are very similar. They both represent fixed point numbers where absolute precision is required. The most convenient Java mapping for these MySQL data type is java.math.BigDecimal. This Java type provides math operations to allow BigDecimal types to be added, subtracted, multiplied, and divided with other BigDecimal types, with integer types, and with floating point types.

We also allow access to these MySQL types as simple Strings and char []. Thus, the Java programmers can use the getString() to retrieve the NUMERICAL and DECIMAL results.

3. BINARY, VARBINARY and LONGVARBINARY
These MySQL data types are closely related. BINARY represents a small, fixed-length binary value, VARBINARY represents a small, variable-length binary value and LONGVARBINARY represents a large, variable-length binary value. For Java programers there is no need to distinguish among these data types and they can all be expressed identically as byte arrays in Java. It is possible to read and write SQL statements correctly without knowing the exact BINARY data type. The ResultSet.getBytes method is used for retrieving the DECIMAL and NUMERICAL values. Same as LONGVARCHAR type, LONGVARBINARY type can also be used to return multi-megabyte data values then the method getBinaryStream is recommended.

4. BIT
The MySQL type BIT represents a single bit value that can be 'zero' or 'one'. And this MySQL type can be mapped directly to the Java boolean type.

5. TINYINT, SMALLINT, INTEGER and BIGINT
The MySQL TINYINT type represents an 8-bit integer value between 0 and 255 that may be signed or unsigned. SMALLINT type represents a 16-bit signed integer value between -32768 and 32767. INTEGER type represents a 32-bit signed integer value between -2147483648 and 2147483647. BIGINT type represents an 64-bit signed integer value between -9223372036854775808 and 9223372036854775807. These MySQL TINYINT, SMALLINT, INTEGER, and BIGINT types can be mapped to Java's byte, short, int and long data types respectively.

6. REAL, FLOAT and DOUBLE
The MySQL REAL represents a "single precision" floating point number that supports seven digits of mantissa and the FLOAT and DOUBLE type represents a "double precision" floating point number that supports 15 digits of mantissa. The recommended Java mapping for REAL type to Java float and FLOAT, DOUBLE type to Java double.

7. DATE, TIME and TIMESTAMP
These three MySQL types are related to time. The DATE type represents a date consisting of day, month, and year, the TIME type represents a time consisting of hours, minutes, and seconds and the TIMESTAMP type represents DATE plus TIME plus a nanosecond field. The standard Java class java.util.Date that provides date and time information but does not match any of these three MySQL date/time types exactly, because it has DATE and TIME information but no nanoseconds.

That's why we define three subclasses of java.util.Date. These are:

· java.sql.Date for SQL DATE information.

· java.sql.Time for SQL TIME information.

· java.sql.Timestamp for SQL TIMESTAMP information.

Connecting to a MySQL Database in Java

In java we have been provided with some classes and APIs with which we can make use of the database as we like. Database plays as very important role in the programming because we have to store the values somewhere in the back- end. So, we should know how we can manipulate the data in the database with the help of java, instead of going to database for a manipulation. We have many database provided like Oracle, MySQL etc. We are using MySQL for developing this application.

In this section, you will learn how to connect the MySQL database with the Java file. Firstly, we need to establish a connection between MySQL and Java files with the help of MySQL driver . Now we will make our account in MySQL database so that we can get connected to the database. After establishing a connection we can access or retrieve data form MySQL database. We are going to make a program on connecting to a MySQL database, after going through this program you will be able to establish a connection on your own PC.

Description of program:
This program establishes the connection between MySQL database and java files with the help of various types of APIs interfaces and methods. If connection is established then it shows "Connected to the database" otherwise it will displays a message "Disconnected from database".

Description of code:
Connection:
This is an interface in java.sql package that specifies connection with specific database like: MySQL, Ms-Access, Oracle etc and java files. The SQL statements are executed within the context of the Connection interface.

Class.forName(String driver):
This method is static. It attempts to load the class and returns class instance and takes string type value (driver) after that matches class with given string.

DriverManager:
It is a class of java.sql package that controls a set of JDBC drivers. Each driver has to be register with this class.

getConnection(String url, String userName, String password):
This method establishes a connection to specified database url. It takes three string types of arguments like:

 url: - Database url where stored or created your database
 userName: - User name of MySQL
 password: -Password of MySQL

con.close():
This method is used for disconnecting the connection. It frees all the resources occupied by the database.

printStackTrace():
The method is used to show error messages. If the connection is not established then exception is thrown and print the message.

Here is the code of program:
	import java.sql.*;

public class MysqlConnect{
 public static void main(String[] args) {
 System.out.println("MySQL Connect Example.");
 Connection conn = null;
 String url = "jdbc:mysql://localhost:3306/";
 String dbName = "jdbctutorial";
 String driver = "com.mysql.jdbc.Driver";
 String userName = "root";
 String password = "root";
 try {
 Class.forName(driver).newInstance();
 conn = DriverManager.getConnection(url+dbName,userName,password);
 System.out.println("Connected to the database");
 conn.close();
 System.out.println("Disconnected from database");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Creating a Database in MySQL

After establishing the connection with MySQL database by using the JDBC driver, you will learn how we can create our database. A database is a large collection of data or information stored in our computer in an arranged way. It helps us for accessing, managing and updating the data easily. In this example we are going to create a database by MySQL and with the help of some java methods and SQL statement. A RDBMS (Relational Database Management System) is a type of DBMS (Database Management System) which stores the data in the form of tables. So, we can view and use the same database in many different ways.

Description of program:
Firstly this program establishes the connection with MySQL database and takes a database name as its input in the database query and only after that it will create a new database and show a message "1 row(s) affected" otherwise, it displays "SQL statement is not executed!".

Description of code:
CREATE DATABASE db_name;
Above code is used for creating a new database. It takes a database name and then a new database is created by that name.

Here is the code of program:
	import java.io.*;
import java.sql.*;

public class CreateDatabase{
 public static void main(String[] args) {
 System.out.println("Database creation example!");
 Connection con = null;
 try{
 Class.forName("com.mysql.jdbc.Driver");
 con = DriverManager.getConnection
("jdbc:mysql://localhost:3306/jdbctutorial","root","root");
 try{
 Statement st = con.createStatement();
 BufferedReader bf = new BufferedReader
(new InputStreamReader(System.in));
 System.out.println("Enter Database name:");
 String database = bf.readLine();
 st.executeUpdate("CREATE DATABASE "+database);
 System.out.println("1 row(s) affacted");
 }
 catch (SQLException s){
 System.out.println("SQL statement is not executed!");
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}

Creating a Database Table

Database: A database is a large collection of data or information to stored in our computer in an arranged way. It helps us for accessing, managing and updating the data easily. In this example we are using MySQL database, which is a RDBMS. A RDBMS (Relational Database Management System) is a type of DBMS (Database Management System) which stores the data in the form of tables. RDBMS is very powerful as it doesn't need to aware how the data is related or how it is going to be extracted from the database. So, we can view the same database in many different ways.

Table: A table is basic component of database (DB) that has number of rows and columns. All tables are stored in a specific database.

Here we are providing you an example with code and it's description that helps you to create a database table by using java file. Brief description given below:

Description of program:
Firstly in this program we are going to establish the connection with database and creating a table with some fields. If table name already exists then we are displaying the message "Table already exists!".

Description of code:
Statement:
It is a interface. Statement object executes the SQL statement and returns the result it produces.

createStatement():
It is a method of Connection interface. which returns Statement object. This method will compile again and again whenever the program runs.

CREATE TABLE table_name(field_name):
An appropriate code used for creating a table with given field name.

executeUpdate(String table):
This method also executes SQL statement that may be INSERT, UPDATE OR DELETE statement are used in the code. It takes string types parameters for SQL statement. It returns int.

Here is the code of program:
	import java.sql.*;

public class CreateTable{
 public static void main(String[] args) {
 System.out.println("Table Creation Example!");
 Connection con = null;
 String url = "jdbc:mysql://localhost:3306/";
 String dbName = "jdbctutorial";
 String driverName = "com.mysql.jdbc.Driver";
 String userName = "root";
 String password = "root";
 try{
 Class.forName(driverName).newInstance();
 con = DriverManager.getConnection(url+dbName, userName, password);
 try{
 Statement st = con.createStatement();
 String table =
 "CREATE TABLE Employee11(Emp_code integer, Emp_name varchar(10))";
 st.executeUpdate(table);
 System.out.println("Table creation process successfully!");
 }
 catch(SQLException s){
 System.out.println("Table all ready exists!");
 }
 con.close();
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}

Creating a MySQL Database Table to store Java Types

Dear user, consider a case where we need to store a java types in our database table. Now one question may arise in your mind that whether the MySQL supports java types or not. This section describes how to create a table in MySQL database that stores all java types. Here we are providing you an example with code for creating a table to store java types. Brief description is given below:

Description of program:
In this program we are going to establish the connection between MySQL database table and java file. After the connection has been established creates a database table for storing all java types. We have used most of the java types provided to us by the jdbc.

Here is the code of program:
	import java.sql.*;

public class CreateMySqlTable{

 public static void main(String[] args) {
 System.out.println("Creating a Mysql Table to Store Java Types!");
 Connection con = null;
 String url = "jdbc:mysql://localhost:3306/";
 String db = "jdbctutorial";
 String driver = "com.mysql.jdbc.Driver";
 String user = "root";
 String pass = "root";
 try{
 Class.forName(driver).newInstance();
 con = DriverManager.getConnection(url+db, user, pass);
 try{
 Statement st = con.createStatement();
<<<<<<< CreateMySqlTable.shtml String table =
"CREATE TABLE java_DataTypes2

("+ "typ_boolean BOOL, "
======= String table
= "CREATE TABLE java_DataTypes2("+ "typ_boolean BOOL, "
>>>>>>> 1.7 + "typ_byte TINYINT, "
 + "typ_short SMALLINT, "
 + "typ_int INTEGER, "
 + "typ_long BIGINT, "
 + "typ_float FLOAT, "
 + "typ_double DOUBLE PRECISION, "
 + "typ_bigdecimal DECIMAL(13,0), "
 + "typ_string VARCHAR(254), "
 + "typ_date DATE, "
 + "typ_time TIME, "
 + "typ_timestamp TIMESTAMP, "
 + "typ_asciistream TEXT, "
 + "typ_binarystream LONGBLOB, "
 + "typ_blob BLOB)";

 st.executeUpdate(table);
 System.out.println(table);

con.close();
 }
 catch (SQLException s){
 System.out.println
("Table is all ready exists!");
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}

Retrieving Tables from a Database

In database system it is very important to know about the tables. To work with this, it is very important to know how to retrieve a table and create a table in the database. This section provides you a facility for retrieving tables from a specific database through an example. In relational database, all the data is stored in the tabular format (rows and columns). See detail information below:

Description of program:
In this program we are establishing the connection between the MySQL database and Java file. We will retrieve the table with the help of some java methods and APIs interface. If the database has one or more tables then it shows all tables, otherwise displays the message "No any table in the database".

Description of code:
DatabaseMetaData:
This is an interface of java.sql package that implemented by driver vendors. It tells about the data of the data like number of tables in the database , the information about the columns of the table.

getMetaData():
It is a method of Connection interface. This method has metadata around the database and retrieves DatabaseMetaData object.

ResultSet:
The ResultSet is an interface that provides getter methods (getBoolean, getString, getTable and so on) for retrieving values. A ResultSet object is by default not updatable and forward only.

getTables(null, null, "%", types):
This method returns ResultSet and takes the following string types parameter:

 catalog : Table catalog name (may be null)
 schemaPattern : Table catalog name (may be null)
 tableNamePattern : Table name("%")
 types : Table type

rs.next():
This method returns the next element of the ResultSet object.

getString("Table name"):
Above method retrieves the values from ResultSet object. It takes string type value.

Here is the code of program:
	import java.sql.*;

public class AllTableName{
 public static void main(String[] args) {
 System.out.println("Listing all table name in Database!");
 Connection con = null;
 String url = "jdbc:mysql://localhost:3306/";
 String db = "jdbctutorial";
 String driver = "com.mysql.jdbc.Driver";
 String user = "root";
 String pass = "root";
 try{
 Class.forName(driver);
 con = DriverManager.getConnection(url+db, user, pass);
 try{
 DatabaseMetaData dbm = con.getMetaData();
 String[] types = {"TABLE"};
 ResultSet rs = dbm.getTables(null,null,"%",types);
 System.out.println("Table name:");
 while (rs.next()){
 String table = rs.getString("TABLE_NAME");
 System.out.println(table);
 con.close();
 }
 }
 catch (SQLException s){
 System.out.println("No any table in the database");
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}

Inserting values in MySQL database table

After making the table in the database, we need to insert the values in the database. Here we are going to see, how we can insert values in the MySQL database table. We know that tables store data in rows and column format. After creating a database table, you need to insert the values in it. In this section, we are providing an example with code that provides the facility for inserting the values in MySQL database table.

Description of program:
First of all this program establishes the connection with MySQL database through the JDBC driver, after only that we will be able to insert the values in specific table with the help of some APIs and methods. If any values get inserted in the table then shows a message "1 row affected" but if any problems comes while inserting the data in the table then it will displays the message "SQL statement is not executed!".

Description of code:
INSERT table_name VALUES(field_values):
Above code is used, when you want to insert values in the database table with appropriate value.

Here is the code of program:
import java.sql.*;

public class InsertValues{
 public static void main(String[] args) {
 System.out.println("Inserting values in Mysql database table!");
 Connection con = null;
 String url = "jdbc:mysql://localhost:3306/";
 String db = "jdbctutorial";
 String driver = "com.mysql.jdbc.Driver";
 try{
 Class.forName(driver);
 con = DriverManager.getConnection(url+db,"root","root");
 try{
 Statement st = con.createStatement();
 int val = st.executeUpdate("INSERT employee VALUES("+13+","+"'Aman'"+")");
 System.out.println("1 row affected");
 }
 catch (SQLException s){
 System.out.println("SQL statement is not executed!");
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}
Retrieving All Rows from a Database Table

Here, you will learn how to retrieve all rows from a database table. You know that table contains the data in rows and columns format. If you want to access the data from a table then you need to use some APIs and methods. See brief descriptions for retrieving all rows from a database table as below:

Description of program:
Program establishes the connection between MySQL database and java file so that the we can retrieve all data from a specific database table. If any exception occurs then shows a message "SQL code does not execute.".

Description of code:
executeQuery(String sql):
This method executes the SQL statement and returns a single ResultSet object. It takes string type parameter for executing the SQL statement.

SELECT * FROM table_name:
Above code retrieves all data from specific database table.

getInt(String column_name):
This method is of java.sql.ResultSet interface that takes string type parameter and returns an integer type values.

getString(String column_name):
This method is same as getInt() method but it returns the string type values.

Here is the code of program:
	import java.sql.*;

public class GetAllRows{
 public static void main(String[] args) {
 System.out.println("Getting All Rows from a table!");
 Connection con = null;
 String url = "jdbc:mysql://localhost:3306/";
 String db = "jdbctutorial";
 String driver = "com.mysql.jdbc.Driver";
 String user = "root";
 String pass = "root";
 try{
 Class.forName(driver).newInstance();
 con = DriverManager.getConnection(url+db, user, pass);
 try{
 Statement st = con.createStatement();
 ResultSet res = st.executeQuery("SELECT * FROM employee6");
 System.out.println("Emp_code: " + "\t" + "Emp_name: ");
 while (res.next()) {
 int i = res.getInt("Emp_code");
 String s = res.getString("Emp_name");
 System.out.println(i + "\t\t" + s);
 }
 con.close();
 }
 catch (SQLException s){
 System.out.println("SQL code does not execute.");
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}

Count Rows from a Database Table

After creating a database table, if we want to know number of rows in a table then we can get it very easily by using the simple database query. See brief description below:

Description of program:
For this program to work firstly we need to establish the connection with MySQL database by the help of JDBC driver. When the connection has been established we need to pass a table name from the given database in the query and the rows will be counted and the result will be displayed. If any exception is thrown then it will show "SQL statement is not executed!"

Description of code:
SELECT COUNT(*) FROM table_name;
This code is used to count the rows of given table.
 table_name: It is a name of the table of which we want to see the rows.

Here is the code of program:
import java.io.*;

import java.sql.*;

public class CountRows{

 public static void main(String[] args) {

 System.out.println("Count number of rows in a specific table!");

 Connection con = null;

 int count = 0;

 try{

 Class.forName("com.mysql.jdbc.Driver");

 con = DriverManager.getConnection

("jdbc:mysql://localhost:3306/jdbctutorial","root","root");

 try{

 Statement st = con.createStatement();

 BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));

 System.out.println("Enter table name:");

 String table = bf.readLine();

 ResultSet res = st.executeQuery("SELECT COUNT(*) FROM "+table);

 while (res.next()){

 count = res.getInt(1);

 }

 System.out.println("Number of column:"+count);

 }

 catch (SQLException s){

 System.out.println("SQL statement is not executed!");

 }

 }

 catch (Exception e){

 e.printStackTrace();

 }

 }

}

Deleting
import java.sql.*;

public class DeleteAllRows{
 public static void main(String[] args) {
 System.out.println
("Example for Deleting All Rows from a database Table!");
 Connection con = null;
 try{
 Class.forName("com.mysql.jdbc.Driver");
 con = DriverManager.getConnection
("jdbc:mysql://localhost:3306/jdbctutorial", "root", "root");
 try{
 Statement st = con.createStatement();
 String sql = "DELETE FROM employee6";
 int delete = st.executeUpdate(sql);
 if(delete == 0){
 System.out.println("All rows are completelly deleted!");
 }
 }
 catch(SQLException s){
 System.out.println("SQL statement is not executed!");
 }
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }
}
Left
The url for jindi-cloudscape is;
jdbc:rmi://localhost:1099/jdbc:cloudscape:CloudscapeDB;create=true

My url that works when the user first creates the database is
jdbc:mysql://localhost:3306/ess

But I want to create the database/schema myself.

I tried
jdbc:mysql://localhost:3306/ess;create=true
what gives the error that database "ess;create=true" doesn't exist

I tried
jdbc:mysql://localhost:3306/ess?create=true
what gives the error that database "ess" doesn't exist

Is it possible to create a database with mysql-connector-java-3.0.16?

import java.sql.*;

public class BasicJDBCDemo

{

 Connection conn;

 public static void main(String[] args)

 {

 new BasicJDBCDemo();

 }

 public BasicJDBCDemo()

 {

 try

 {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 String url = "jdbc:mysql://localhost/coffeebreak";

 conn = DriverManager.getConnection(url, "username", "password");

 doTests();

 conn.close();

 }

 catch (ClassNotFoundException ex) {System.err.println(ex.getMessage());}

 catch (IllegalAccessException ex) {System.err.println(ex.getMessage());}

 catch (InstantiationException ex) {System.err.println(ex.getMessage());}

 catch (SQLException ex) {System.err.println(ex.getMessage());}

 }

 private void doTests()

 {

 doSelectTest();

 doInsertTest(); doSelectTest();

 doUpdateTest(); doSelectTest();

 doDeleteTest(); doSelectTest();

 }

 private void doSelectTest()

 {

 System.out.println("[OUTPUT FROM SELECT]");

 String query = "SELECT COF_NAME, PRICE FROM COFFEES";

 try

 {

 Statement st = conn.createStatement();

 ResultSet rs = st.executeQuery(query);

 while (rs.next())

 {

 String s = rs.getString("COF_NAME");

 float n = rs.getFloat("PRICE");

 System.out.println(s + " " + n);

 }

 }

 catch (SQLException ex)

 {

 System.err.println(ex.getMessage());

 }

 }

 private void doInsertTest()

 {

 System.out.print("\n[Performing INSERT] ... ");

 try

 {

 Statement st = conn.createStatement();

 st.executeUpdate("INSERT INTO COFFEES " +

 "VALUES ('BREAKFAST BLEND', 200, 7.99, 0, 0)");

 }

 catch (SQLException ex)

 {

 System.err.println(ex.getMessage());

 }

 }

 private void doUpdateTest()

 {

 System.out.print("\n[Performing UPDATE] ... ");

 try

 {

 Statement st = conn.createStatement();

 st.executeUpdate("UPDATE COFFEES SET PRICE=4.99 WHERE COF_NAME='BREAKFAST BLEND'");

 }

 catch (SQLException ex)

 {

 System.err.println(ex.getMessage());

 }

 }

 private void doDeleteTest()

 {

 System.out.print("\n[Performing DELETE] ... ");

 try

 {

 Statement st = conn.createStatement();

 st.executeUpdate("DELETE FROM COFFEES WHERE COF_NAME='BREAKFAST BLEND'");

 }

 catch (SQLException ex)

 {

 System.err.println(ex.getMessage());

 }

 }

}

MySQL Creating account and changing password

This MySQL provide the new creating account or you want to change the password then make new user .This lesson you learn how to create new password. Mysql as the intended username and the group the next available the UID, the user alternative e-mail address etc. The user need to require to a group that does not exit yet, then first create the group with editing /etc/group manually. MySQL create new user account use the login "data" and use the adduser command . And you can choose the password "admin" for this user account .

Creating a new user Account
	root@data:~# adduser
...
Enter username [a-z0-9_-]: USERNAME
Enter full name []: FIRSTNAME LASTNAME
Enter shell bash csh ksh nologin sh []: bash
Uid []: UID
Login group groupname []: GROUPNAME
Login group is "GROUPNAME".
Invite username into other groups: guest no []: no
Enter password []: admin
Enter password again []: admin
...
Name: username
Password: xxxx
Fullname: firstname lastname
Uid: UID
Gid: GID (GROUPNAME)
Groups: GROUPNAME
HOME: /home/USERNAME
Shell: /usr/local/bin/bash
OK? (y/n) []: y
...
root@data:~# ~/bin/randpass.sh USERNAME
Enter user's email address: EMAIL-ADDRESS
Is it correct? (y/n) y

MySQL is also provide this code for if you want to create new account to login name database and connected the MySQL root. Here code is follow:-
	root@database:~# /opt/sfw/bin/mysql -p
Enter password: ROOT-PASSWORD
...
mysql> use mysql
mysql> insert into user (host,username,password) values ("%","USERNAME",password("PASSWORD"));

MySQL Deleting User Account
The MySQL User account you want to delete then enter the completely it is not recommended that you do. if you can change the password to same random to be string . the better way is to change the login shell . It is done by logging in data and using the vipw command to enter the password file to run make the /var/yp /directory after you make.

Account Management Statements

In MySQL user account information?s are stored in mysql database tables. In this section we will describe you about Create User, Drop User, Grant Syntax, Rename User, Revoke Syntax and Set Password Syntax.

CREATE USER Syntax
The general syntax of CREATE USER statement is :
 CREATE USER user [IDENTIFIED BY [PASSWORD] 'password'].....
In MySQL version 5.0.2 include the statement CREATE USER. It is used to create a new MySQL account. But for using this statement you need the global CREATE USER privilege or the INSERT privilege for mysql database. The CREATE USER statement creates a new record for each account in user table of mysql database. But if account is already exists then it occurs the error message. By the IDENTIFIED BY clause we can give the password to account. If you want to specify a password in plain text the does not include the PASSWORD keyword. But when you specify the PASSWORD keyword then password returned as the hashed value by the PASSWORD() function. Each account can be named by using the same format as for GRANT statement like ?root?@?localhost?. But when you define only the username as part of the account name then a hostname part of ?%? is used. Example :

	mysql> CREATE USER chandan IDENTIFIED BY 'chandan';

Query OK, 0 rows affected (0.04 sec)

mysql> select user from user;

+---------+

| user |

+---------+

| |

| chandan |

| |

| root |

+---------+

4 rows in set (0.00 sec)

DROP USER Syntax

The general syntax of DROP USER statement is :
 DROP USER user [, user] ...
DROP USER statement is used to remove one or more than MySQL account. But for using this statement you need the global CREATE USER privilege or DELETE privilege. Example :

	mysql> DROP USER chandan;

Query OK, 0 rows affected (0.69 sec)

mysql> select user from user;

+------+

| user |

+------+

| |

| |

| root |

+------+

3 rows in set (0.11 sec)

This statement is used to delete only that MySQL accounts which have no privileges and it removes each account only from user table. For removing a MySQL account completely you have to perform the following steps :

· Firstly use SHOW GRANTS statements for determining the account has what type of privileges.

· Then use REVOKE statement for revoking the privileges that displayed by SHOW GRANTS statement.

· Use DROP USER statement for removing the account.

DROP USER statement cannot automatically close any open user session. But, if any open session user is dropped then this statement does not effect until the session is closed. After closing the session the user is dropped.

GRANT Syntax
The general syntax of GRANT statement is:
GRANT priv_type [(column_list)] [, priv_type [(column_list)]] ... ON [object_type] {tbl_name | * | *.* | db_name.*} TO user [IDENTIFIED BY [PASSWORD] 'password'] [, user [IDENTIFIED BY [PASSWORD] 'password']] ... [WITH with_option [with_option] ...]
object_type = TABLE | FUNCTION | PROCEDURE

with_option = GRANT OPTION | MAX_QUERIES_PER_HOUR count | MAX_UPDATES_PER_HOUR count | MAX_CONNECTIONS_PER_HOUR count | MAX_USER_CONNECTIONS count

By using GRANT statement we can enable the system administrator for creating MySQL user accounts and for granting the right to from accounts. But for using the GRANT statement you need the GRANT OPTION privilege and you also required the privileges which you are granting. The REVOKE statement is used to relate and enable the administrator for removing the account privileges. But when grant tables hold the privilege rows which contain the mixed case database or the table name and the lower_case_table_name system variable is set to non-zero value then REVOKE statement cannot used for revoking these privileges.

Privileges can be granted at several levels:

· Global level
Global level privileges are applied to all databases on a given server. These type of privileges are stored in the user table of mysql database. Ex ? GRANT ALL ON *.* and REVOKE ALL ON *.*;

· Database level
Database level privileges are applied to all objects in a given database. These type of privileges are stored in the db and host tables of the mysql databases. Ex ? GRANT ALL ON database_ name.* and REVOKE ALL ON database_name.*

· Table level
Table level privileges are applied to all columns on a given table. These type of privileges are stored in the table_priv table of the mysql database. EX ? GRANT ALL ON database_name.table_name and REVOKE ALL ON database_name.table_name.

· Column level
Column level privileges are applied to single column on a given table. These type of privileges are stored in columns_priv table of mysql database. And at the time of using REVOKE statement you have to specify the same column name that were granted.

· Routine level
Routine level privileges like CREATE ROUTINE, EXECUTE, ALTER ROUTING and GRANT privileges are applied to stored routines. These type of privileges can be granted at global and database level. Except CREATE ROUTINE, rest of these privileges can be granted at routine level for particular routines and they are stored in the procs_priv table of mysql database.

The object_type clause was included in the version of MySQL5.0.6. This clause can be defined as TABLE, FUNCTION or PROCEDURE when the following object is a table, function or procedure.

priv_type can be specified as any of the following :

	Privilege
	Meaning

	ALL [PRIVILEGES]
	Sets all simple privileges except GRANT OPTION

	ALTER
	Enables use of ALTER TABLE

	ALTER ROUTINE
	Enables stored routines to be altered or dropped

	CREATE
	Enables use of CREATE TABLE

	CREATE ROUTINE
	Enables creation of stored routines

	CREATE TEMPORARY TABLES
	Enables use of CREATE TEMPORARY TABLE

	CREATE USER
	Enables use of CREATE USER, DROP USER, RENAME USER, and REVOKE ALL PRIVILEGES.

	CREATE VIEW
	Enables use of CREATE VIEW

	DELETE
	Enables use of DELETE

	DROP
	Enables use of DROP TABLE

	EXECUTE
	Enables the user to run stored routines

	FILE
	Enables use of SELECT ... INTO OUTFILE and LOAD DATA INFILE

	INDEX
	Enables use of CREATE INDEX and DROP INDEX

	INSERT
	Enables use of INSERT

	LOCK TABLES
	Enables use of LOCK TABLES on tables for which you have the SELECT privilege

	PROCESS
	Enables use of SHOW FULL PROCESSLIST

	REFERENCES
	Not implemented

	RELOAD
	Enables use of FLUSH

	REPLICATION CLIENT
	Enables the user to ask where slave or master servers are

	REPLICATION SLAVE
	Needed for replication slaves (to read binary log events from the master)

	SELECT
	Enables use of SELECT

	SHOW DATABASES
	SHOW DATABASES shows all databases

	SHOW VIEW
	Enables use of SHOW CREATE VIEW

	SHUTDOWN
	Enables use of mysqladmin shutdown

	SUPER
	Enables use of CHANGE MASTER, KILL, PURGE MASTER LOGS, and SET GLOBAL statements, the mysqladmin debug command; allows you to connect (once) even if max_connections is reached

	UPDATE
	Enables use of UPDATE

	USAGE
	Synonym for ?no privileges?

	GRANT OPTION
	Enables privileges to be granted

The privileges like PROCESS, FILE, REPLICATION CLIENT, RELOAD, REPLICATION SLAVE, SHUTDOWN, SHOW DATABASES, SUPER privileges are administrative privileges which can only be granted globally. And other privileges can also be granted global or more specific levels. Example for granting the global privilege :

	mysql> CREATE USER raj@localhost IDENTIFIED BY 'raj';

Query OK, 0 rows affected (0.00 sec)

mysql> select user from user;

+---------+

| user |

+---------+

| |

| chandan |

| |

| raj |

| root |

+---------+

5 rows in set (0.00 sec)

mysql> GRANT ALL ON *.* TO raj@localhost;

Query OK, 0 rows affected (0.00 sec)

In usernames Mysql does not support wildcards. Anonymous users are defined by inserting in user table of mysql database with User=?? or creating a user account with an empty name with the GRANT statement. By executing the following query of any anonymous users :

	mysql> SELECT HOST, USER FROM USER WHERE USER='';

+-----------+------+

| HOST | USER |

+-----------+------+

| % | |

| localhost | |

+-----------+------+

2 rows in set (0.00 sec)

By using following statement you can delete the local anonymous user account :

	mysql> DELETE FROM USER WHERE HOST='localhost' AND User='';

Query OK, 1 row affected (0.00 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.06 sec)

The WITH GRANT OPTIONS clause is used to provide the ability to user for providing to other users any privileges. But you have to careful about who is providing you the GRANT OPTION privilege because two users that have the different privileges can be able to join privileges. By the GRANT OPTION you can only assign only those privilege which yourself you have.

The MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count, and MAX_CONNECTIONS_PER_HOUR count options is used to limit the total number of queries, updates and logins, a user can perform these between specified one hour period. But if count is 0 then there is no limitation for that user. The MAX_USER_CONNECTIONS count option is used to limit the number of simultaneous connections, which the account can make.

RENAME USER Syntax
The general syntax of RENAME USER statement is:
 RENAME USER old_user TO new_user [, old_user TO new_user] ...
The RENAME USER statement is used to rename the existing MySQL user accounts but for using this statement you need the global CREATE USER privilege or the UPDATE privilege. But if old account does not exists or the new account exists then it occurs the error. Example :

	mysql> RENAME USER chandan TO chand;

Query OK, 0 rows affected (0.80 sec)

mysql> SELECT User FROM User;

+-------+

| User |

+-------+

| |

| chand |

| raj |

| root |

+-------+

4 rows in set (0.16 sec)

REVOKE Syntax
The general syntax of REVOKE statement is :
 REVOKE priv_type [(column_list)] [, priv_type [(column_list)]] ... ON [object_type] {tbl_name | * | *.* | db_name.*} FROM user [, user] ...
 REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...
The REVOKE statement is used to enable the system administrator for revoking the privileges from MySQL accounts but for using this statement you need the GRANT OPTION privilege and you also need the privileges that you are revoking. All level of privileges and allowable priv_type values we have discussed above.

But when grant tables hold the privilege rows which contain the mixed case database or the table name and the lower_case_table_name system variable is set to non-zero value then REVOKE statement cannot used for revoking these privileges. It will be necessary to manipulate the grant tables directly.

By using following statement you can revoke all privileges for the name user. Example :

	mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM chand;

Query OK, 0 rows affected (0.01 sec)

mysql> SHOW GRANTS FOR chand \G;

*************************** 1. row ***************************

Grants for chand@%: GRANT USAGE ON *.* TO 'chand'@'%' IDENTIFIED BY PASSWORD '*A

59F8074680E742CC90A8595EFD7D1404FC8ED2F'

1 row in set (0.00 sec)

SET PASSWORD Syntax

The general syntax of SET PASSWORD statement is:
 SET PASSWORD [FOR user] = PASSWORD('some password')
The SET PASSWORD statement is used to assign a password to existing user. If you are not using FOR clause then its set the password for the current user. Any client using non anonymous account and it is connected with the server can change the password for that account. But if you are using FOR clause then it sets the password for a specified account on current server host but for this you must have the UPDATE privilege. Example :

	mysql> SELECT User, Password FROM User;

+-------+---+

| User | Password |

+-------+---+

| root | *81F5E21E35407D884A6CD4A731AEBFB6AF209E1B |

| | |

| raj | *7A5773507B1A6F85B4954BC90D6FB55416B0DCF8 |

| chand | *DD13F1F66054912AB8F82CA33BBDEE9E442582DB |

+-------+---+

4 rows in set (0.00 sec)

mysql> SET PASSWORD FOR chand=PASSWORD('chand2');

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT User, Password FROM User;

+-------+---+

| User | Password |

+-------+---+

| root | *81F5E21E35407D884A6CD4A731AEBFB6AF209E1B |

| | |

| raj | *7A5773507B1A6F85B4954BC90D6FB55416B0DCF8 |

| chand | *8CCD023D22DCD5607CD453A60598EF23B29DCA6B |

+-------+---+

4 rows in set (0.00 sec)

