JAVA PACKAGES

Overview

· Every class is part of some package.

· All classes in a file are part of the same package.

· You can specify the package using a package declaration:

package name ;

as the first (non-comment) line in the file.

· Multiple files can specify the same package name.

· If no package is specified, the classes in the file go into a special unnamed package (the same unnamed package for all files).

· If package name is specified, the file must be in a subdirectory called name (i.e., the directory name must match the package name).

· You can access public classes in another (named) package using:

package-name.class-name

You can access the public fields and methods of such classes using:

package-name.class-name.field-or-method-name

You can avoid having to include the package-name using:

import package-name.*;

or

import package-name.class-name;

at the beginning of the file (after the package declaration). The former imports all of the classes in the package, and the second imports just the named class. You must still use:

class-name

to access the classes in the packages, and

class-name.field-or-method-name

to access the fields and methods of the class; the only thing you can leave off is the package name.

Examples

Assume that you are working in a directory called Javadir, and that you create four files, whose contents are shown below.

file 1
package ListPkg;

public class List { ... }

class ListNode {...}

file 2
package ListPkg;

public class NoNextItemException { ... }

file 3
public class Test { ... }

class Utils { ... }

file 4
class Test2 { ... }

Here are the directories and file names you must use:

· File 1 must be in a subdirectory named ListPkg, in a file named List.java.

· File 2 must also be in the ListPkg subdirectory, in a file named NoNextItemException.java.

· File 3 must be in a file named Test.java (in the Javadir directory).

· File 4 can be in any .java file (in the Javadir directory).

And here are the classes that can be accessed by the code in each file:

· Files 1 and 2:

· The code in the first two files (ListPkg/List.java and ListPkg/NoNextItemException.java) can access the classes defined in the same package (List, ListNode, and NoNextItemException). (No access was specified for those classes, so they get the default, package access.)

· The code in files 1 and 2 cannot access class Test, even though it is a public class. The problem is that Test is in an unnamed package, so the code in the ListPkg package has no way to import that package, or to name class Test.

· The code in files 1 and 2 cannot access classes Utils and Test2, because they have default (package) access, and are in a different package.

· Files 3 and 4:

· The code in file 3 (Test.java) can access classes ListPkg.List, ListPkg.NoNextItemException, Test, Utils, and Test2 (the first two because they are public classes in a named package, and the last three because they are in the same, unnamed package, and have either public or package access). Note however, that if the code in Test.java uses the class Test2, and that class is not in a file called Test2.java, then the file that contains class Test2 must be compiled first, or else the class will not be found.

· The code in file 4 (the file that contains class Test2) can access the same classes as the code in file 3 (Test.java).

Here's a summary of the example:

	File Contents
	Directory/FileName
	Can Access

	package ListPkg;

 public class List {...}

 class ListNode {...}
	ListPkg/List.java
	List, ListNode, NoNextItemException

	package ListPkg;

 public class NoNextItemException

 {...}
	ListPkg/NoNextItemException.java
	List, ListNode, NoNextItemException

	public class Test {...}

class Utils {...}
	Test.java
	ListPkg.List, ListPkg.NoNextItemException, Test, Utils, Test2

	class Test2 {...}
	any-name.java
	ListPkg.List, ListPkg.NoNextItemException, Test, Utils, Test2

How the Java Compiler Finds Files

When you compile a file that uses a class (or interface) that is not defined in the same file, the Java compiler uses

· the name of the class

· the names of imported packages (if any)

· the name of the current package

to try to locate the class definition. For example, assume that you are working in directory Javadir, which contains one file named Test.java:

import ListPkg.*;

public class Test {

 List L;

 ...

}

Since List is not defined in Test.Java, and since there is no file List.java in the current directory, the compiler will look for List.java in the ListPkg subdirectory (since Test.java imports the ListPkg package).

Now suppose that the ListPkg subdirectory contains two files: List.java and ListNode.java, both part of the ListPkg package. Also assume that List.java uses the ListNode class defined in ListNode.java. If you try to compile just List.java in the ListPkg subdirectory, you will get an error, because the compiler will try to find the file ListNode.java in a "ListPkg" subdirectory of the current directory, rather than looking in the current directory itself.

There are (at least) three ways to solve this problem:

1. Always compile a package from the parent directory. For example, compile List.java from Javadir, rather than from Javadir/ListPkg; in the Javadir directory, type:

javac ListPkg/List.java

2. Always compile all files in a package at the same time; for example, in the directory Javadir/ListPkg type:

javac *.java

3. Make a circular link from the package subdirectory to itself; for example, in the directory Javadir/ListPkg type:

ln -s . ListPkg

The CLASSPATH Environment Variable

To use a package that is not in a subdirectory of the current directory (i.e., the directory in which you invoke javac), you must set the environment variable CLASSPATH to tell the java compiler where to look.

For example, if there were a List package in /p/course/cs368-horwitz/public/ListPkg, you would set CLASSPATH like this:

 setenv CLASSPATH .:/p/course/cs368-horwitz/public

Including the dot and the colon before the directory tells the compiler also to look in the directory in which the compile is being done. Note that you should set the CLASSPATH variable to the parent of the "ListPkg" subdirectory, not to the ListPkg subdirectory itself.

Layouts

Layouts tell Java where to put components in containers (JPanel, content pane, etc). Every panel (and other container) has a default layout, but it's better to set the layout explicitly for clarity.

Create a new layout object (using one of its constructors) and use the container's setLayout method to set the layout. Each layout has its own way to resize components to fit the layout, and you must become familiar with these.

Tools. Creating your layouts by hand is simple for the simple layouts, but for really good layouts using the difficult GridBagLayout, you might want to use a program to help you. A good review of some of these programs is at Java GUI Builders (www.fullspan.com/articles/java-gui-builders.html) by Mitch Stuart.

More noteshttp://www.leepoint.net/notes-java/GUI/layouts/10flowlayout.html

· FlowLayout - left to right, top to bottom. Good for initial testing. FlowLayout does not respect preferred size information, so it may make variable size elements (eg, a graphics panel) extremely small.

· BorderLayout - north, east, south, west, and center areas. Has various rules for how components are stretched to fit these areas. Both common and useful.

· GridLayout - equal sized grid elements.

· BoxLayout and Boxes - horizontal or vertical sequence of components.

· GridBagLayout - unequal sized grid. Can produce excellent results, but can be difficult to use.

· SpringLayout was added in Java 1.4, but is difficult for humans. It is rumored to be intended for authomatic layout programs..

· CardLayout is good for something like a wizard interface which shows one of several possible layouts (think about a stack of index cards). Tabbed panes are something like a card layout with tabs.

· The Null layout (absolute positioning) is possible, but is a bad idea.

· Tabbed panes are something like a card layout with tabs. They are not implemented as a layout, but as a type of panel.

· Non-standard layout managers. Because of deficiencies in the standard Java layout managers, several good, free, alternatives exist.

