Project title

PROJECT REPORT

On

PROJECT TITLE
Submitted By
STUDENT NAME
 (DOEACC REG. NO. ****)

Under the guidance

Of
Your Guide Name
Submitted in partial fulfillment of the requirements of

For

Qualifying DOEACC ‘A’ Level
[image: image4.wmf]

Study Center:

ACSA

10th B ROAD SARDARPURA

JODHPUR
PROJECT TITLE
SUBMITTED BY

STUDENT NAME
 (DOEACC REG. NO. ****)

DATE OF SUBMISSION :

Under the guidance of : Your Guide Name
Submitted in partial fulfillment of the requirements for qualifying DOEACC ‘A’ Level.
[image: image1.png]:

QUALITY

ASSURANCE
COMPUTER

EDUCATION

=¥ 31 § U | |

ACSA COMPUTER CENTER,

599, 10th B’ ROAD, SARDARPURA

JODHPUR, RAJASTHAN.

PIN: 342003
PERFORMA OF COVERING LETTER TO THE PROJECT REPORT
Executive Director,

DOEACC Society,

6, CGO Complex

Lodhi Road

New Delhi-110003

Sir,

I am submitting my ‘A” Level Project for evaluation. Details of my Registration and postal address, etc is as under:

Regn. No :****

 Level: A
Name : STUDENT NAME
Father’s Name : Student father’s name
Address:

(a) Residential Address: STUDENT NAME
D/O ​​​Student father’s name

Address

Tele No:

(b)
 Office Address:
ACSA COMPUTER CENTER,

599, 10th B’ROAD, SARDARPURA,

JODHPUR, RAJASTHAN. .

PIN: 342003. .

 Tele No:

E-mail Address (Please in block letters only):

PROJECT CERTIFICATE FOR ‘A’ LEVEL

This is to certify that the project entitled PROJECT TITLE BY STUDENT NAME (DOEACC REG. NO. ****) is a bonafide work done by in partial fulfillment of “A” level examination and has been carried out under my direct supervision and guidance.

This report or a similar report on this topic has not been submitted for any course examination and does not form part of any other course undergone by the candidate.

(Director)

 (By head of the institution with PROV NO. / FULL NO.) OR

 (By head of the Organization / Division
PERFORMA FOR A Level PROJECT CERTIFICATE

FROM PROJECT GUIDE /ACCREDITED INSTITUTE
This is to certify that the Project / Dissertation entitled PROJECT TITLE
is a bonafide work done by Mr. / Ms. STUDENT NAME
(DOEACC Registration No . ****) in partial fulfillment of A Level examination and has been carried out under my direct supervision and guidance. This report or a similar report on the topic has not been submitted for any other examination and does not form a part of any other course undergone by the candidate.

Signature of Guide / Supervisor

Name: Your Guide Name
Place: _______________

Designation:
Date: ________________
Address: ​​​​​​​​​​​​​​​________________

Signature of Center Manager

[In case of a candidate from Accredited Institute]

DOEACC

Project Work Evolution

Candidate’s Registration No. : - ****
Name: -

 STUDENT NAME
Project Title: -

 PROJECT TITLE
Institution Address: -
 599 ACSA 10TH B Road Sardarpura Jodhpur
My Profile

Name : STUDENT NAME
Father’s Name: ​​​ Student father’s name
(a) Address : STUDENT NAME
Contact no. :

E-mail ID :
ACKNOWLEDGEMENT
The successful completion of this project has improved my impetuous towards efficient working and revealed how ideas and concept are converted into real life practical system.

Throughout the period of this project, I was helped by the expert knowledge of my guide Your Guide Name whose guidance, suggestions and encouragement in completion of this project has been invaluable to me. I would take this opportunity to thank him for his dedication, enthusiasm and pursuance to complete the project in the best possible manner.

I am very much thankful to my friends and colleagues with whom I have, from time to time, discussed which greatly helped me in the formulation of the ideas. Their goodwill and cooperation was of much help to me in completing this project.

Finally, I would like to thank all the members of the faculty and staff of the Academy of Computer Science and Applications, for their support and guidance which helped and encouraged me to complete the project. Particularly to put on record my great indebtness to Shri Yudhister Bhati, Director, ACSA for the care and interest he took in the project.

STUDENT NAME
CONTENTS
	1.
	Abstract
	

	2.
	Introduction.
	

	
	2.1
	Purpose
	

	
	2.2
	Features.
	

	
	2.3
	Overview of project
	

	
	2.4
	Users of the project
	

	
	2.5
	User constraints.
	

	3.
	System Analysis
	

	
	3.1
	Information Gathering.
	

	
	
	3.1.1
	Existing System
	

	
	3.2
	3.1.2

Feasibility
	Proposed System

Study

	

	4.
	System Requirement Specification
	

	5.
	System Study
	

	
	5.1
	Input Design
	

	
	5.2
	Output Design
	

	
	5.3
	Modular Design
	

	
	5.4
	Database Design
	

	
	5.5
	Data Flow Diagram (DFD)
	

	
	5.6
	Functional Block Diagram
	

	6.
	Implementation and Acceptance
	

	7.
	Testing
	

	
	7.1
	What do we Test for?
	

	
	7.2
	Types of Testing.
	

	8.
	Maintenance
	

	9
	System Security and Recovery.
	

	10.
	Scope of Project
	

	11.
	Conclusion
	

	12.
	Source Code
	

	13.
	Bibliography
	

1.
ABSTRACT
This project will help us in the management of a video library. This software will help in displaying all the video moves available in the library, adding new movies, searching of movies according to customer requirements, adding new customers and their details, deleting of movies as well as customers. The software also helps in making invoices which includes rent, fine and total amount with respect to different conditions. We can set this software for maintaining the record of movies i.e. issue and return of movies from library.

If required, it can also display the list of customers and list of movie present in video library.

The project has been developed in “C” language with the help of computer graphics and file handling. All the data related with customer details and movie details are stored in files using file handling. User interface has been designed using computer graphics.

2.
INTRODUCTION

The project “PROJECT TITLE” will help us in management of a video library. This software will help in displaying all the video movies available in the library, adding new movies, searching of movies according to customer requirements, adding new customers and their details, deleting of movies as well as customers. The software also helps in making invoices which includes rent, fine and total amount with respect to different conditions.

This project is developed using “C” language. The main advantage of this software is that it reduces all paper work and automates the project title.

2.1
PURPOSE
●
This software is used to manage the video library.

●
It saves time as it allows number of customers to be handled as all the customers are allotted their own unique customer ID.

●
Administrator has the privilege to enter new customers details, maintain transactions, view all customer’s and movies details.

2.2
FEATURES

The features of this project are :-

●
Secure

●
Easy to use

●
User friendly

●
Reliable and accurate

●
It is fast and easy because it is executed using computer system.

●
It is flexible and can be updated.

●
Easy to implement.

●
It provides advanced features.

2.3
OVERVIEW OF PROJECT

This project will help us in management of a video library. This software will help in displaying all the video movies available in the library, adding new movies, searching of movies according to customer requirements, adding new customers and their details, deleting of movies as well as customers. The software also helps in making invoices which includes rent, fine and total amount with respect to different conditions.
The features supported by the software developed are as follows :

●
Adding movie details.

●
Displaying movie details.

●
Searching particular movie.

●
Deleting movie.

●
Adding new customers.

●
Delete customer details.

●
View all customer details.

●
Invoice preparations as per conditions.

●
User friendly and compatible.

2.4
USERS OF THE PROJECT
There are two different users who will be using this product :-

●
Administrator.

●
Customer.

2.5
USER CONSTRAINTS

User interface is only in English i.e. no other language option is available.

3.
SYSTEM ANALYSIS
System analysis is the way of studying a system with the focus on solving its problem using computer. It is the most essential part of the development of the project. System analysis consists of system element, process (procedure/ approach to solve the problem) and technology (Identification of the smallest unit).

To analyse a system, analyst has to study the system in details. The analyst has to understand the functioning and concept of the system in detail, before designing the appropriate computer based system that meet all the requirements of the existing system. The system analyst has to carry out a customary approach to use the computer for problem solving.

3.1
INFORMATION GATHERING
●
Till now there is no existing system that contains all the information and maintain the records.

●
If this work is done manually it requires a lot of time and having less accuracy.

3.1.1
 EXISTING SYSTEM
The whole process of project title, was done manually till date. Processing the details of movies, customers etc used to take much time, when the software was not installed. The old system used a lot of paper work and required more time and man power.

Disadvantages in the Existing System

The first problem encountered is that there are loads of hard copies documents being generated. This brings us to the age-old discussion of keeping information in the form of databases versus keeping the same on sheets of paper. Keeping the information in the form of hard-copied documents leads to the following problems viz.

(i)
Lack of space :- It becomes a problem in itself to provide a space to keep data sheets of paper being generated as a result of processing. The documents being generated are too important to be ill-treated.

(ii)
File work poses a problem :- Filing of the documents is a time consuming and tedious exercise.

(iii)
Filtering in not easy :- It becomes difficult to filter relevant information/document from the irrelevant ones when information exceed certain manageable number.

(iv)
Reviewing becomes time-consuming :- As all the process are carried out manually at the centres and all the records are maintained on the papers, so the maintenance of the record is very difficult in the department and it is very difficult for the workers to check the errors. The existing system is paper based, time consuming monotonous, less flexible and provides a very hectic working schedule. The chance of loss of records is high and also the record searching is difficult and takes a lot of time.

(v)
Slow Speed :- The processing is slow due to paper work and requires more time and man power.

3.1.2

PROPOSED SYSTEM :
 3.1.2(1)
CHARACTERISTICS OF THE PROPOSED SYSTEM
The characteristics of the system are :-

●
Adding movie details.

●
Displaying movie details.

●
Searching particular movie.

●
Adding new customers.

●
Delete customer details.

●
View all customer details.

●
Invoice preparations as per conditions.

●
User friendly and compatible.

3.1.2(2)
ADVANTAGES OF THE PROPOSED SYSTEM :

The advantages of the proposed system are :-

●
Immediate Result.

●
Reliable and Consistent.

●
Flexible and Secure.

●
Faster response.

●
Minimum man power with less paper work.

3.2
FEASIBILITY STUDY
Feasibility study is undertaken to determine the possibility of either improving the existing system or developing a completely new system. Analyst provide a definite format to all the problems present in the system and estimates the size and cost/project of the system. The study is conducted to select the best system that meets the required performance.

Three are mainly five aspects of feasibility study:

(A)
Technical Feasibility - Technical feasibility concerned with three main issues :

1.
whether the proposed technology or solution is practical ?

2.
whether the necessary technology is available?

3.
whether the technical perfection is available ?

Whether scheduling is proper ?

In short it is concerned with specifying equipment and software that will successfully support the required task.

The proposed system is technically feasible as the required development software is freely available. In today’s context, all the systems are equipped with very good configuration. The administrator and the users need just a computer to use the proposed system very easily and comfortably. So, the system is completely feasible technically.

(B)
Behavioural Feasibility :- People are inherently resistant to change and computers have been known to facilitate change. An estimate should be made to know the reaction of the user staff towards the development of proposed system, that involves computers use in their day to day working.

The project is likely to remove much work load of the users. The users will also be benefited. Thus the proposed system fulfills the behavioural feasibility.

(C)
Economical Feasibility :- this is the most important criteria for any organization. The study is used for evaluating the effectiveness of a new system. During the initial stage of the analysis, analyst estimates the cost and profit of the system.

Economical feasibility delineates cost for project development and weighs them against tangible and intangible benefits. The development Turbo “C” software is freely available so the system is economically feasible.

(D)
Operational Feasibility :- It mainly consider two aspects namely “

(i)
Technical performance aspect

(ii)
Acceptance within the organization.

Technical performance includes the issue whether the system can provide the right information for the organization’s personnel and whether the system delivers the information at the right place and at the right time.

(E)
Schedule Feasibility :- The degree to which a company can acquire and install a new computer system in a reasonable amount of time is known as schedule feasibility.

The project can be implemented within the schedule time period as all the resources which are necessary for development of projects are easily available. Thus the proposed system fulfills schedule feasibility.

4.
SYSTEM REQUIREMENT SPECIFICATION
This includes the specific requirements needed, functions, performance, design and software attributes. It is organized in a logical manner and is easy to follow.

“C” language has been used as a developing language.

Tools / Platform used :

Hardware Requirements

	Hardware Used
	Description

	1. Processor
	Pentium III-class processor, 600 MHz or Higher

	2. Monitor
	VGA monitor

	3. Keyboard
	Standard Keys (101 or 105 keys)

	4. Mouse
	Microsoft Mouse or compatible pointing device or Standard pointing device.

	5. RAM
	192 MB or Higher

	6. Hard Disk
	40 GB or higher

	7. Motherboard
	810E/Chipset/845

	8. Cabinet
	AT/ATX

	9. Floppy Disk Drive
	1.44 MB

	10. CD-ROM Drive
	52X

	11. Printer
	Dot Matrix/HP Laser Jet 2100

	12. Modem
	Internal/External 56 KBPS

	13.Video
	800 x 600, 256 colors

 Software Requirements

	Software Used
	Description

	1. Operating System
	MS-Windows 2000 or higher

	2. Language/Compiler
	‘C’ Language Compiler

5.
SYSTEM STUDY

System design is the solution to the creation of a new system. This phase is composed of several systems. This phase focuses on the detailed implementation of the feasible system. It emphasis on translating design specifications to performance specification.

5.1
Input Design : Input design of the system is the part of system design which deals with the design of interface through which user communicates with the system.

The design is developed using “C” language with the help of graphics.

5.2
Output Design : The part of the system design which deals with determining how the output is to be presented i.e. in what format or shape is known as output design of the system.

The output of a computer system is the primary contact between the system and the users. Results stored in or computed by computer must be printed or displayed in order to be beneficial to the users.
The quality of this output and its usefulness determines whether the system is used or not. Hence it is essential to have the best possible output. The output design includes various user friendly views and reports. This also involves generating various reports based on requirements.

5.3
Modular Design : A system cannot be decomposed into several subsystems in any way. There must some logical barrier, which facilitates the separation of each module. The separation must be simple and effective.

Breakings down a problem smaller independent tasks (modules) allow us to focus more on a particular task of the problem without worrying about the overall problem. Each module performs a very specific function. We can code each module independent of the others and test or debug each module separately. Once all modules are working properly, they can be linked together by writing the coordinating code. The coordinating code activates the various modules in a predetermined sequence. Thus modularization helps to write better structured solutions that are more compact and easier to work with. Modules make the system not only simple and easier to understand but also easier to redesign and rebuild.

The system under consideration has been divided into several modules taking into consideration the above mentioned criteria. The different modules are :-

1)
Customer Module

2)
Movie Module.

3)
Transaction Module.

5.4
Database Design : The database of the customers and movies are stored in files using file handling. All the details regarding customers and movies can be edited and deleted by using various file handling codes. The invoice can be generated by reading the data stored in files.

5.5
Data Flow Diagram (DFD) : Data flow diagram provides a logical model of the system and show the flow of data and flow of the logic involved.

It describes the flow of data in the whole system, data store and indicates the processes which change the data flow. It is a logical model that describes what takes place in the existing/proposed system, not how the activities are accomplished.

Characteristics of DFDs.

1.
They show the passage of data through the system.

2.
They focus on the processes that transform inputs into the outputs.

Splash screen
[image: image2.png]VIDEO

LIBRARY

MAIN MENU FORM:

CUSTOMER SECTION FORM:

MOVIE SECTION FORM:

TRANSACTION SECTION FORM:

ABOUT DEVELOPER FORM:

Data Flow Diagram for Project title

Hire

Check

Available

 Invoice

Issue

Invoice

 Payment
Level O Diagram for Project title

 Hire Available

 Reply

 available

Level 1 Diagram for Project title
5.6
Functional Block Diagram

I.
Customer Function
 INPUT

PROCESS

 OUTPUT

II.
Transaction Function
INPUT

PROCESS

 OUTPUT

III.
Movie Function

INPUT

PROCESS

 OUTPUT

6.
IMPLEMENTATION AND ACCEPTANCE
Implementation of this system replaces a manual system with a new computerized system. A person having a very little knowledge of a computer system can use this system effectively and can maintain it easily.

Implementation would also depend upon the available resources and type of the hardware available. The system can be upgraded effectively, as and when required, with minimum cost and time.

System Acceptance Criteria – A system must possess some basic desirable features for acceptance :-
1.
Correctness - It means the system must meet the desired goals of the organization.

2.
Reliability – A system is reliable if the user can trust the results given by the system.

3.
Robustness - A system is said to be robust, if it can adapt to unanticipated changes in the environment such as disk crash or incorrect input data.

4.
Performance – Performance of a system is measured as (a) Processing speed (b) Response time (C) Resource consumption (D) Efficiency.

If a system is slow, it will reduce productivity. If system uses more spaces on disk, it will be costly.

5.
User friendly – It is measured in terms of :

(a)
Physical and/or skill required to learn the system.

(b)
Time required to use the system efficiently.

(c)
User’s attitude towards the system.

6.
Maintainability – It is a measured as function of the efforts required to locate and fix an error in the system. System must correct error with minimum efforts.

7.
Testability – It is a measure of efforts required to test the system to ensure its accurate performance.

8.
Inter Operatability – It is the ability of the system to co-exist and co-operate with other system.

The present system fulfills all the above mentioned criteria and completes all requirements of the organization with utmost satisfaction.

7.
TESTING
Testing is the process of making sure that the programs perform the intended tasks. Testing process confirms the performance against requirement. It makes the logical assumption that if all the parts of the system perform well, the goal will be achieved successfully. Testing is vital to the success of the system. Testing process confirms the performance against requirement. During system testing, the system is used experimentally to ensure that the software does not fail i.e. it will run according to specification and in the way users expect it to do.

7.1
What do we test for ?

(1)
Simplicity - It is essential to test whether a system is user friendly or not e.g. How many steps will be executed for printing ? i.e. more the complexivity in operational process of a system, more will be errors to run it. The present system is user friendly and is very easy to run it.

(2)
Volume testing - In this testing, more and more records are prepared. This helps in knowing the efficiency, software and hardware.

The system can work efficiently in the environment where large numbers of data are made computerized. It provides better functionality than the manual system and provides very fast data access to the user.

(3)
Faster response - A system must have a definite response time. Response time is decided by inserting all transaction during the peak hours and estimate the response time of each work.

This system provides the faster response of all the queries of the user. It provides the response within very small time limit.

(4)
Transaction Testing - By applying both type of test (Black Box and white Box testing strategy) strategy we find that the system provides the good functionality and make the correct data inside the database. White box testing is concerned with implementation of the program. This test concentrates on the examination of coding. Black box testing is concerned with proper execution of the program specifications. In this testing, each function or sub program used in the main program is first identified. Test cases are decided to test each function.

(5)
Recovery Testing - User is mostly concerned with recovery of data in situation like data crash and to prevent unauthorized access to data.

7.2
Type of testing
A system must be tested thoroughly so that errors are detected and corrected as early as possible. Testing process is an iterative process, with information being feedback from later stages to earlier parts of the system repeatedly.

(1)
Unit Testing - Individual functions are tested to ensure that they are operating correctly. Each individual module has been tested using two techniques of testing.

Each individual form has been validated so that user enters only valid data at every time. For e.g. Type checks, Dependency checks, Mandatory field checks.

(2)
Module Testing - A module is a collection of related components so that it can be tested without other system modules.

(3)
Sub-system Testing - This involves testing a collection of modules which have been integrated in to sub-system.

(4)
System Testing - The sub-systems are connected together to make the whole system. It is concerned with checking that system meets the organization objectives.

The system developed is running successfully without any errors and crashes.

8.
MAINTENANCE
Maintenance is the process of incorporating changes in the implemented existing system for proper utilization. It involves enhancement, adaptation and correction.

(1)
Enhancement - It implies adding new functions or additional capabilities to the system.

(2)
Adoption – It implies customizing and correcting the bugs in the existing software.

The software is maintained by the administrator. Use of the same database may create different problems. Administrator manages data activities by setting some standards, controlled working system and documentation. Each data base has a standard name, format and planning to access. Administrator authorizes a person for data access and data modification. He is responsible for recovery of data when a system is stopped.

The main responsibilities of the system administrator are as :

(i)
Routine auditing of system and software.

(ii)
To keep back up

(iii)
To install new hardware and software

(iv)
To add, delete or upgrade the users account information.

(v)
Responsible for security.

(vi)
To solve the problems when arises

(vii)
To answer the technical questions.

In the proposed system administrator has been given all the authorities to perform various function. He is responsible for addition of new customer, deletion of customer, addition and deletion of new movies, preparation of invoices etc. overall, the software is running comfortably without any error or problem and data base crashes.

9.
SYSTEM SECURITY AND RECOVERY
The success of a system is analysed on the basis of its internal and external security. For any organization / company, its data and information are most important. The integrity of the system depends upon two factors.

(i)
Data and information are destroyed due to malfunctioning of the system.

(ii)
Unauthorized access to data may lead to misuse of the information.

Threats to system security are –

(i)
Errors and omission

(ii)
Disgruntled and dishonest employee.

(iii)
Fire

(iv)
Natural disasters

System analyst uses many ways to protect data from destruction which includes –

(a)
Facility for back-up

(b)
Facility of data recovery in case the system crash.

(c)
Methods of using password and encryption to prevent unauthorized access and illegal access.

(d)
To prevent virus attack.

The proposed system is able to take backup of the data stored inside the system in an external storage media such as floppy disk, zip media etc. Backup facilities mean alternative facilities of program, data files, hardware equipments etc that are used in case the original one is destroyed, lost or fails to operate. In case of any failure, a user can restore their data with the help of external storage media and restore the lost data. The proposed system is secured with the help of username and password so that any unauthorized person can not access the data stored in the files.

10.
SCOPE OF PROJECT
This project can be used in the library management as well as in the management of Departmental stores / stores where customer – products relationship exists with slight modifications. The hardware and system software required for the system are easily available. Thus the system can be updated and upgraded easily according to the environment with minimum time and cost.

11.
CONCLUSION
The project “PROJECT TITLE” fully meets the objectives of the system for which it has been developed. Administrator has a privilege to create, modify and delete the customer and movie details and can add different new customers and movies. The system provides a user-friendly interface. The system solves the problem, for which it was intended to solve, as per required specification. The system can be up-dated and up-graded easily if situation required to do so.

The system developed is running successfully without any errors and crashes. It has been developed with minimum cost and is fully secured.

About C language

Introduction
C (pronounced see, like the letter C) is a general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating system. Although C was designed for implementing system software it is also widely used for developing portable application software.

C is one of the most widely used programming languages of all time and there are very few computer architectures for which a C compiler does not exist. C has greatly influenced many other popular programming languages, most notably C++, which began as an extension to C.
History

The initial development of C occurred at AT&T Bell Labs between 1969 and 1973;according to Ritchie, the most creative period occurred in 1972. It was named "C" because its features were derived from an earlier language called "B", which according to Ken Thompson was a stripped-down version of the BCPL programming language.

The origin of C is closely tied to the development of the Unix operating system, originally implemented in assembly language on a PDP-7 by Ritchie and Thompson, incorporating several ideas from colleagues. Eventually they decided to port the operating system to a PDP-11. B's inability to take advantage of some of the PDP-11's features, notably byte addressability, led to the development of an early version of C.

The original PDP-11 version of the Unix system was developed in assembly language. By 1973, with the addition of struct types, the C language had become powerful enough that most of the Unix kernel was rewritten in C. This was one of the first operating system kernels implemented in a language other than assembly. (Earlier instances include the Multics system (written in PL/I), and MCP (Master Control Program) for the Burroughs B5000 written in ALGOL in 1961.)

K&R C
In 1978, Brian Kernighan and Dennis Ritchie published the first edition of The C Programming Language.[8] This book, known to C programmers as "K&R", served for many years as an informal specification of the language. The version of C that it describes is commonly referred to as K&R C. The second edition of the book[1] covers the later ANSI C standard.

K&R introduced several language features:

· standard I/O library

· long int data type

· unsigned int data type

compound assignment operators of the form =op (such as =-) were changed to the form op= to remove the semantic ambiguity created by such constructs as i=-10, which had been interpreted as i =- 10 instead of the possibly intended i = -10

Even after the publication of the 1989 C standard, for many years K&R C was still considered the "alowest common denominator" to which C programmers restricted themselves when maximum portability was desired, since many older compilers were still in use, and because carefully written K&R C code can be legal Standard C as well.

In early versions of C, only functions that returned a non-int value needed to be declared if used before the function definition; a function used without any previous declaration was assumed to return type int, if its value was used.
Design
C is an imperative (procedural) systems implementation language. It was designed to be compiled using a relatively straightforward compiler, to provide low-level access to memory, to provide language constructs that map efficiently to machine instructions, and to require minimal run-time support. C was therefore useful for many applications that had formerly been coded in assembly language.

Despite its low-level capabilities, the language was designed to encourage cross-platform programming. A standards-compliant and portably written C program can be compiled for a very wide variety of computer platforms and operating systems with few changes to its source code. The language has become available on a very wide range of platforms, from embedded microcontrollers to supercomputers.
Characteristics

Like most imperative languages in the ALGOL tradition, C has facilities for structured programming and allows lexical variable scope and recursion, while a static type system prevents many unintended operations. In C, all executable code is contained within subroutines, which are called "functions" (although not in the strict sense of functional programming). Function parameters are always passed by value. Pass-by-reference is simulated in C by explicitly passing pointer values. C program source text is free-format, using the semicolon as a statement terminator and curly braces for grouping blocks of statements.

The C language also exhibits the following more specific characteristics:
· There are a small, fixed number of keywords, including a full set of flow of control primitives: for, if, while, switch, and do..while. There is basically one namespace, and user-defined names are not distinguished from keywords by any kind of sigil.

· There are a large number of arithmetical and logical operators, such as +, +=, ++, &, ~, etc.

· More than one assignment may be performed in a single statement.

· Function return values can be ignored when not needed.

· Typing is static, but weakly-enforced: all data has a type, but implicit conversions can be performed; for instance, characters can be used as integers.

· Declaration syntax mimics usage context. C has no "define" keyword; instead, a statement beginning with the name of a type is taken as a declaration. There is no "function" keyword; instead, a function is indicated by the parentheses of an argument list.

· User-defined (typedef) and compound types are possible.

· Heterogeneous aggregate data types (struct) allow related data elements to be accessed, for example assigned, as a unit.

· Array indexing is a secondary notion, defined in terms of pointer arithmetic. Unlike structs, arrays are not first-class objects; they cannot be assigned or compared using single built-in operators. There is no "array" keyword, in use or definition; instead, square brackets indicate arrays syntactically, e.g. month[11].

· Enumerated types are possible with the enum keyword. They are not tagged, and are freely interconvertible with integers.

· Strings are not a separate data type, but are conventionally implemented as null-terminated arrays of characters.

· Low-level access to computer memory is possible by converting machine addresses to typed pointers.

· Procedures (subroutines not returning values) are a special case of function, with a dummy return type void.

· Functions may not be defined within the lexical scope of other functions.

· Function and data pointers permit ad hoc run-time polymorphism.

· A preprocessor performs macro definition, source code file inclusion, and conditional compilation.

· There is a basic form of modularity: files can be compiled separately and linked together, with control over which functions and data objects are visible to other files via static and extern attributes.

· Complex functionality such as I/O, string manipulation, and mathematical functions are consistently delegated to library routines.

 "Hello, world" example
The "hello, world" example, which appeared in the first edition of K&R, has become the model for an introductory program in most programming textbooks, regardless of programming language. The program prints "hello, world" to the standard output, which is usually a terminal or screen display.

The original version was:
main()

{

 printf("hello, world\n");

}
A standard-conforming "hello, world" program is
#include <stdio.h>

int main(void)

{

 printf("hello, world\n");

 return 0;

}

13. SOURCE CODE

/*--*/

/*--*/

/*

 PROJECT TITLE SYSTEM */

/*--*/

/*--*/

/*--*/

#include<stdio.h>

#include<conio.h>

#include<dos.h>

#include<string.h>

#include<graphics.h>

#define PATH "C:\\TC\\BGI"

#define TBG textbackground(WHITE);textcolor(BLUE)

int status(void);

int title(char *,int);

int selectbox(int ,char[]);

int pressbutton(int ,char[]);

 int customer(void);

 int movie(void);

 int transactions(void);

 int gotorc(int,int);

 int addcus(void);

 int modify(void);

 int delete(void);

 int listcust(void);

 void main_menu(void);

 int addmov(void);

int listmov(void);

int delmov(void);

 int searchmov(void);

 int addtran(void);

 int listtran(void);

// int new(void);

 int closetran(void);

 int box(int, char[]);

 int screen1(void);

 int screen2(void);

typedef struct customer

 {

 long id;

 char name[20];

 char pn[12];

 char address[40];

 char category;

 int doj[3];

 }cust;

typedef struct movie

 {

 long id;

 char title[25];

 int copy;

 int cponshelf;

 int issue;

 char sid[20];

 int loc;

 }mov;

typedef struct transaction

 {

 long invoice;

 int doi[3];

 int dor[3];

 char title[25];

 int fine;

 long cid;

 char cname[20];

 int copies;

 int rent;

 int tam;

 }transaction;

cust ctr;

mov mv;

transaction tran;

FILE *fc,*fm,*ft,*tmp;

long int size;

long int sizemov;

int days,k=0;

struct date d;

//box(int, int[]);

void main_menu()

 {

char *menu[]={"CUSTOMER SECTION",

"MOVIE SECTION",

"TRANSACTION SECTION",

"EXIT"};

char ch;

int gd=DETECT,gm,i,choice=0;

initgraph(&gd,&gm,PATH);

setfillstyle(SOLID_FILL,RED);

bar(0,0,640,480);

title("MAIN MENU",180);

status();

box(0,menu[0]);

box(1,menu[1]);

box(2,menu[2]);

box(3,menu[3]);

selectbox(choice,menu[choice]);

//72 up

//80 down

//75 left

//77 right

//13 enter

//49 1

//71 Home

//79 End

//73 PgUp

//81 PgDown

//27 Escape

while((ch=getch())!=13)

{

switch(ch)

{

case 80:

case 81:

choice++;

if(choice==4)

choice=0;

selectbox(choice,menu[choice]);

for(i=0;i<=3;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

break;

case 72:

case 73:

choice--;

if(choice==-1)

choice=3;

selectbox(choice,menu[choice]);

for(i=0;i<=3;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

}

}

pressbutton(choice,menu[choice]);

 switch(choice)

 {

 case 0:

 size=sizeof(ctr);

 customer();

 break;

 case 1:

 sizemov=sizeof(mv);

 movie();

 break;

 case 2:

 transactions();

 break;

 case 3:

 closegraph();

 restorecrtmode();

 exit(0);

 }

 }

customer()

{

char *menu[]={

"ADD CUSTOMER",

"MODIFY CUSTOMER",

"DELETE CUSTOMER",

"LIST CUSTOMER",

"BACK TO MAIN MENU",

"EXIT"

};

char ch;

int gd=DETECT,gm;

int i,choice=0;

initgraph(&gd,&gm,PATH);

setfillstyle(SOLID_FILL,RED);

bar(0,0,640,480);

title("CUSTOMER MENU",130);

status();

box(0,menu[0]);

box(1,menu[1]);

box(2,menu[2]);

box(3,menu[3]);

box(4,menu[4]);

box(5,menu[5]);

selectbox(choice,menu[choice]);

//72 up

//80 down

//75 left

//77 right

//13 enter

//49 1

//71 Home

//79 End

//73 PgUp

//81 PgDown

//27 Escape

while((ch=getch())!=13)

{

switch(ch)

{

case 80:

case 81:

choice++;

if(choice==6)

choice=0;

selectbox(choice,menu[choice]);

for(i=0;i<=5;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

break;

case 72:

case 73:

choice--;

if(choice==-1)

choice=5;

selectbox(choice,menu[choice]);

for(i=0;i<=5;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

}

}

pressbutton(choice,menu[choice]);

closegraph();

restorecrtmode();

 clrscr();

 fc=fopen("c:/customer.txt","rb+");

 if(fc==NULL)

 //if((fc=fopen("c:customer.txt","rb+"))==NULL)

fc=fopen("c:/customer.txt","wb+");

 switch(choice)

{

 case 0:

addcus();

break;

case 1:

rewind(fc);

modify();

break;

 case 2:

delete();

break;

 case 3:

listcust();

break;

 case 4:

fclose(fc);

main_menu();

break;

 case 5:

fclose(fc);

exit(1);

}

return;

}

movie()

{

char *menu[]={

"ADD MOVIE",

"LIST MOVIES",

"DELETE MOVIE",

"SEARCH MOVIE",

"BACK TO MAIN MENU",

"EXIT"

};

char ch;

int gd=DETECT,gm;

int i,choice=0;

initgraph(&gd,&gm,PATH);

setfillstyle(SOLID_FILL,RED);

bar(0,0,640,480);

title("MOVIE MENU",165);

status();

box(0,menu[0]);

box(1,menu[1]);

box(2,menu[2]);

box(3,menu[3]);

box(4,menu[4]);

box(5,menu[5]);

selectbox(choice,menu[choice]);

//72 up

//80 down

//75 left

//77 right

//13 enter

//49 1

//71 Home

//79 End

//73 PgUp

//81 PgDown

//27 Escape

while((ch=getch())!=13)

{

switch(ch)

{

case 80:

case 81:

choice++;

if(choice==6)

choice=0;

selectbox(choice,menu[choice]);

for(i=0;i<=5;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

break;

case 72:

case 73:

choice--;

if(choice==-1)

choice=5;

selectbox(choice,menu[choice]);

for(i=0;i<=5;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

}

}

pressbutton(choice,menu[choice]);

closegraph();

restorecrtmode();

 clrscr();

 /*textcolor(4);*/

 fm=fopen("c:/movie.txt","rb+");

 if(fm==NULL)

 fm=fopen("c:/movie.txt","wb+");

 switch(choice)

{

 case 0:

addmov();

break;

 case 1:

listmov();

break;

 case 2:

delmov();

break;

 case 3:

 searchmov();

 break;

 case 4:

main_menu();

break;

 case 5:

fclose(fm);

exit(1);

}

return;

}

transactions()

 {

 char *menu[]={

"NEW TRANSACTION",

"CLOSE TRANSACTION",

"LIST TRANSACTIONS",

"SEARCH MOVIE",

"BACK TO MAIN MENU",

"EXIT"

};

char ch;

int gd=DETECT,gm,i,choice=0;

initgraph(&gd,&gm,PATH);

setfillstyle(SOLID_FILL,RED);

bar(0,0,640,480);

title("TRANSACTION MENU",100);

status();

box(0,menu[0]);

box(1,menu[1]);

box(2,menu[2]);

box(3,menu[3]);

box(4,menu[4]);

box(5,menu[5]);

selectbox(choice,menu[choice]);

//72 up

//80 down

//75 left

//77 right

//13 enter

//49 1

//71 Home

//79 End

//73 PgUp

//81 PgDown

//27 Escape

while((ch=getch())!=13)

{

switch(ch)

{

case 80:

case 81:

choice++;

if(choice==6)

choice=0;

selectbox(choice,menu[choice]);

for(i=0;i<=5;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

break;

case 72:

case 73:

choice--;

if(choice==-1)

choice=5;

selectbox(choice,menu[choice]);

for(i=0;i<=5;i++)

{

if(i==choice) continue;

box(i,menu[i]);

}

}

}

pressbutton(choice,menu[choice]);

closegraph();

restorecrtmode();

 clrscr();

 ft=fopen("c:/transact.txt","rb+");

 if(ft==NULL)

ft=fopen("c:/transact.txt","wb+");

 switch(choice)

{

 case 0:

addtran();

break;

 case 1:

closetran();

break;

 case 2:

listtran();

break;

 case 3:

 fm=fopen("c:/movie.txt","rb+");

 if(fm==NULL)

 fm=fopen("c:/movie.txt","wb+");

 searchmov();

 break;

 case 4:

main_menu();

break;

 case 5:

exit(0);

}

return;

 }

addcus()

 {

 char another='y';

 fseek(fc,0,SEEK_END);

 TBG;

 while(another=='y'||another=='Y')

{

 clrscr();

 printf("******************** ADD CUSTOMER FORM *********************\n");

 printf("\n CUSTOMER ID(NUMERIC) :");

 printf("\n\n CUSTOMER NAME :");

 printf("\n\n CUSTOMER PHONE NO :");

 printf("\n\n CUSTOMER ADDRESS :");

 printf("\n\n DATE OF JOINING :");

 printf("\n\n CATEGORY(H/A/C/R/S/T) :");

 gotorc(2,24);

 customid();

 gotorc(4,24);

 fflush(stdin);

 gets(ctr.name);

 gotorc(6,24);

 fflush(stdin);

 gets(ctr.pn);

 gotorc(8,24);

 fflush(stdin);

 gets(ctr.address);

 gotorc(10,24);

 fflush(stdin);

 getdate(&d);

 ctr.doj[0]=d.da_day;

 ctr.doj[1]=d.da_mon;

 ctr.doj[2]=d.da_year;

 printf("%d/%d/%d",d.da_day,d.da_mon,d.da_year);

 gotorc(12,24);

 fflush(stdin);

 ctr.category=getche();

 gotorc(16,3);

 printf("DO YOU WANT TO SUBMIT THIS FORM (Y/N)");

 fflush(stdin);

 another=getch();

 if(another=='y'||another=='Y')

 fwrite(&ctr,size,1,fc);

 gotorc(18,3);

 printf("DO YOU WANT TO ADD ANOTHER CUTOMER(Y/N)");

 fflush(stdin);

 another=getch();

}

 fclose(fc);

 customer();

 return;

 }

customid()

 {

 rewind(fc);

 if(fread(&ctr,sizeof(ctr),1,fc)!=1)

ctr.id=1;

 else

 {

while(fread(&ctr,sizeof(ctr),1,fc)==1);

 ctr.id++;

 }

 printf("%ld",ctr.id);

 return;

 }

 modify()

 {

 char another='y',choice,name[20],flag='n';

 long id;

 TBG;

 while(another=='y'||another=='Y')

{

 clrscr();

 rewind(fc);

 printf("
SEARCH BY NAME : PRESS 1
SEARCH BY ID : PRESS 2
");

 fflush(stdin);

 choice=getchar();

 if(choice=='2')

 {

 printf("ENTER CUSTOMER ID : ");

 scanf("%ld",&id);

 while(fread(&ctr,size,1,fc)==1)

 {

if(ctr.id==id)

 {

 new();

 flag='y';

 break;

 }

 }

 }

 if(choice=='1')

 {

 printf("ENTER CUSTOMER NAME : ");

 fflush(stdin);

 gets(name);

 while(fread(&ctr,size,1,fc)==1)

{

 if(strcmpi(ctr.name,name)==0)

 {

 new();

 flag='y';

 break;

 }

}

 }

 if(flag=='n')

 {

 gotorc(15,3);

 printf("CUSTOMER NOT FOUND............ !");

 }

 gotorc(18,3);

 printf("DO YOU WANT TO MODIFY ANOTHER CUTOMER(Y/N)");

 fflush(stdin);

 another=getch();

}

 fclose(fc);

 customer();

 }

new()

{

 char another='y';

 clrscr();

 TBG;

 fseek(fc,-size,SEEK_CUR);

printf("\n CUSTOMER'S NEW NAME :");

printf("\n\n CUSTOMER'S NEW PHONE NO :");

printf("\n\n CUSTOMER'S NEW ADDRESS :");

printf("\n\n NEW DATE OF JOINING (DD<-|MM<-|YYYY<-|) :");

printf("\n\n NEW CATEGORY(H/A/C/R/S/T) :");

gotorc(1,43);

fflush(stdin);

gets(ctr.name);

gotorc(3,43);

fflush(stdin);

gets(ctr.pn);

gotorc(5,43);

fflush(stdin);

gets(ctr.address);

gotorc(7,43);

fflush(stdin);

scanf("%d",&ctr.doj[0]);

gotorc(7,45);

printf("%c",'/');

scanf("%d",&ctr.doj[1]);

gotorc(7,48);

printf("%c",'/');

scanf("%d",&ctr.doj[2]);

gotorc(9,43);

fflush(stdin);

ctr.category=getche();

gotorc(16,3);

printf("UPDATE THE CUSTOMER RECORD (Y/N)");

fflush(stdin);

another=getch();

if(another=='y'||another=='Y')

fwrite(&ctr,size,1,fc);

rewind(fc);

 }

listcust()

{

int i=1,p=4;

clrscr();

TBG;

rewind(fc);

printf("******************** CUSTOMERS LIST ************");

gotorc(2,3);

printf("ID");

gotorc(2,8);

printf("NAME");

gotorc(2,22);

printf("PHONE NO");

gotorc(2,35);

printf("ADDRESS");

gotorc(2,55);

printf("D.O.J");

gotorc(2,68);

printf("CATEGORY");

while(fread(&ctr,size,1,fc)==1)

{

gotorc(p,3);

printf("%ld",ctr.id);

gotorc(p,8);

printf("%s",strupr(ctr.name));

gotorc(p,22);

printf("%s",ctr.pn);

gotorc(p,35);

printf("%s",strupr(ctr.address));

gotorc(p,55);

printf("%d/%d/%d",ctr.doj[0],ctr.doj[1],ctr.doj[2]);

gotorc(p,70);

printf("%c",toupper(ctr.category));

if(i%15==0)

{

gotorc(40,3);

printf("\n PRESS ANY KEY TO CONTINUE.....");

getch();

clrscr();

p=4;

}

p+=2;

i++;

}

printf(" \n PRESS ANY KEY TO BACK TO CUSTOMER MENU");

 getch();

 customer();

 return;

 }

delete()

 {

 char another='y',choice,name[20],flag='n';

 long id;

 tmp=fopen("c:/emp.txt","wb");

 rewind(fc);

 TBG;

 while(another=='y'||another=='Y')

{

 clrscr();

 printf("
DELETE BY NAME : 1
DELETE BY ID : 2
");

 fflush(stdin);

 choice=getchar();

 if(choice=='2')

 {

 printf("ENTER CUSTOMER ID : ");

 scanf("%ld",&id);

 clrscr();

 while(fread(&ctr,size,1,fc)==1)

 {

if(ctr.id!=id)

 fwrite(&ctr,size,1,tmp);

else

flag='y';

 }

 }

 if(choice=='1')

 {

 printf("ENTER CUSTOMER NAME : ");

 fflush(stdin);

 gets(name);

 clrscr();

 while(fread(&ctr,size,1,fc)==1)

{

 if(strcmpi(ctr.name,name)!=0)

 fwrite(&ctr,size,1,tmp);

 else

flag='y';

}

 }

 fclose(fc);

 fclose(tmp);

 remove("c:/customer.txt");

 rename("c:/emp.txt","c:/customer.txt");

 if(flag=='n')

 printf("CUSTOMER NOT FOUND.... !");

 printf("DO YOU WANT TO DELETE ANOTHER CUTOMER(Y/N)");

 fflush(stdin);

 another=getch();

}

 fclose(fc);

 customer();

 return;

 }

 addmov()

 {

 char another='y';

 TBG;

 fseek(fm,0,SEEK_END);

 while(another=='y'||another=='Y')

{

 clrscr();

 printf("*****************ADD MOVIE FORM*****************");

 printf("\n MOVIE ID(NUMERIC) :");

 printf("\n MOVIE NAME :");

 printf("\n NO OF COPIES :");

 printf("\n SUPPLIER ID :");

 printf("\n LOCATION :");

 gotorc(1,24);

 movid();

 gotorc(2,24);

 fflush(stdin);

 gets(mv.title);

 gotorc(3,24);

 fflush(stdin);

 scanf("%d",&mv.copy);

 mv.cponshelf=mv.copy;

 mv.issue=0;

 gotorc(4,24);

 fflush(stdin);

 gets(mv.sid);

 gotorc(5,24);

 fflush(stdin);

 scanf("%d",&mv.loc);

 fwrite(&mv,sizeof(mv),1,fm);

 printf("DO YOU WANT TO ADD ANOTHER MOVIE(Y/N)");

 fflush(stdin);

 another=getch();

}

 fclose(fm);

 printf("\n PRESS ANY KEY TO BACK TO MOVIE MENU");

 movie();

 return;

 }

 movid()

 {

 rewind(fm);

 if(fread(&mv,sizeof(mv),1,fm)!=1)

mv.id=1;

 else

 {

while(fread(&mv,sizeof(mv),1,fm)==1);

 mv.id++;

 }

 printf("%ld",mv.id);

 return;

 }

 listmov()

 {

 int i=1,p=4;

 textbackground(WHITE);

 textcolor(BLUE);

 clrscr();

 rewind(fm);

 printf("******************** MOVIE LIST *****************");

 gotorc(2,1);

 printf("ID");

 gotorc(2,5);

 printf("TITLE");

 gotorc(2,25);

 printf("TOT_CP");

 gotorc(2,35);

 printf("CP_O_SHELF");

 gotorc(2,48);

 printf("TOT_ISSUES");

 gotorc(2,59);

 printf("SUPPLIER ID");

 gotorc(2,71);

 printf("LOCATION");

 while(fread(&mv,sizeof(mv),1,fm)==1)

{

gotorc(p,1);

printf("%ld",mv.id);

gotorc(p,5);

printf("%s",strupr(mv.title));

gotorc(p,28);

printf("%d",mv.copy);

gotorc(p,40);

printf("%d",mv.cponshelf);

gotorc(p,52);

printf("%d",mv.issue);

gotorc(p,59);

printf("%s",mv.sid);

gotorc(p,70);

printf("%d",mv.loc);

if(i%10==0)

{

printf("\n PRESS ANY KEY TO CONTINUE.....");

fflush(stdin);

getch();

clrscr();

p=4;

}

i++;

p+=2;

}

 printf("\n PRESS ANY KEY TO BACK TO MOVIE MENU");

 getch();

 fclose(fm);

 movie();

 return;

 }

 searchmov()

{

 char mname[20],another;

 TBG;

 clrscr();

 rewind(fm);

 gotorc(5,5);

 printf("ENTER MOVIE TITLE : ");

 fflush(stdin);

 gets(mname);

 while(fread(&mv,sizeof(mv),1,fm)==1)

{

if(strcmpi(mv.title,mname)==0)

{

gotorc(7,12);

textcolor(0);

cprintf("MOVIE FOUND..");

textcolor(4);

gotorc(9,5);

printf("MOVIE TITLE : %s",mv.title);

gotorc(11,5);

printf("TOTAL NO OF COPIES : %d",mv.copy);

gotorc(13,5);

printf("NO OF COPIES AVAILABLE : %d",mv.cponshelf);

gotorc(15,5);

printf("SUPPLIER ID : %s",mv.sid);

gotorc(17,5);

printf("LOCATION : %d",mv.loc);

gotorc(20,5);

printf("DO YOU WANT TO SEARCH MORE MOVIES(Y/N)");

fflush(stdin);

another=getchar();

if(another=='y'||another=='Y')

searchmov();

fclose(fm);

movie();

}

}

gotorc(7,5);

textcolor(4);

cprintf("MOVIE NOT FOUND.....!");

textcolor(4);

gotorc(12,5);

printf("DO YOU WANT TO SEARCH MORE MOVIES(Y/N)");

fflush(stdin);

another=getchar();

if(another=='y'||another=='Y')

searchmov();

fclose(fm);

movie();

return;

}

delmov()

 {

 char another='y',choice,name[20],flag='n';

 long id;

 tmp=fopen("c:/moi.txt","wb");

 rewind(fm);

 TBG;

 while(another=='y'||another=='Y')

{

 clrscr();

 printf("
DELETE BY NAME : 1
DELETE BY ID : 2
");

 fflush(stdin);

 choice=getchar();

 if(choice=='2')

 {

 printf("ENTER movie ID : ");

 scanf("%ld",&id);

 clrscr();

 while(fread(&mv,sizemov,1,fm)==1)

 {

if(mv.id!=id)

 fwrite(&mv,sizemov,1,tmp);

else

flag='y';

 }

 }

 if(choice=='1')

 {

 printf("ENTER MOVIE NAME : ");

 fflush(stdin);

 gets(name);

 clrscr();

 while(fread(&mv,sizemov,1,fm)==1)

{

 if(strcmpi(mv.title,name)!=0)

 fwrite(&mv,sizemov,1,tmp);

 else

flag='y';

}

 }

 fclose(fm);

 fclose(tmp);

 remove("c:/movie.txt");

 rename("c:/moi.txt","c:/movie.txt");

 if(flag=='n')

 printf("CUSTOMER NOT FOUND.... !");

 printf("DO YOU WANT TO DELETE ANOTHER MOVIE(Y/N)");

 fflush(stdin);

 another=getch();

}

 fclose(fm);

 movie();

 return;

 }

addtran()

 {

 char another='y',rec;

 TBG;

 fseek(ft,0,SEEK_END);

 while(another=='y'||another=='Y')

{

 clrscr();

 printf("***************** TRANSACTION****************");

 printf(" \n\n INVOICE NO(NUMERIC) :");

 printf("\n\n MOVIE TITLE :");

 printf(" \n\n COPIES AVAILABLE :");

 printf(" \n\n CUSTOMER ID :");

 printf("\n\n CUSTOMER NAME :");

 printf("\n\n NO. OF COPIES :");

 printf("\n\n DATE OF ISSUE :");

 gotorc(2,24);

 invoice();

 gotorc(4,24);

 fflush(stdin);

 gets(tran.title);

 gotorc(6,24);

 avail();

 gotorc(8,24);

 fflush(stdin);

 scanf("%ld",&tran.cid);

 custcheck();

 gotorc(12,24);

 fflush(stdin);

 scanf("%d",&tran.copies);

 if(tran.copies>mv.cponshelf)

{

gotorc(18,3);

printf("TRANSACTION NOT POSSIBLE : REQUIRED NO OF COPIES NOT AVAILABLE \n");

printf("\n PRESS ANY KEY TO BACK TO TRANSACTION MENU");

getch();

transactions();

}

 gotorc(14,24);

 fflush(stdin);

 getdate(&d);

 tran.doi[0]=d.da_day;

 tran.doi[1]=d.da_mon;

 tran.doi[2]=d.da_year;

 printf("%d/%d/%d",d.da_day,d.da_mon,d.da_year);

 tran.dor[0]=0;

 tran.rent=0;

 gotorc(18,4);

 printf("DO YOU WANT TO RECORD THIS TRANSACTION(Y/N)");

 rec=getchar();

 if(rec=='y'||rec=='Y')

{

update();

fwrite(&tran,sizeof(tran),1,ft);

}

 printf("DO YOU WANT TO ADD ANOTHER TRANSACTION(Y/N)");

 fflush(stdin);

 another=getch();

}

 fclose(ft);

 printf("\n PRESS ANY KEY TO BACK TO TRANSACTION MENU");

 transactions();

 }

 custcheck()

{

if((fc=fopen("c:/customer.txt","rb"))==NULL)

fc=fopen("c:/customer.txt","wb+");

rewind(fc);

 while(fread(&ctr,sizeof(ctr),1,fc)==1)

{

 if(ctr.id==tran.cid)

{

 gotorc(10,24);

 printf("%s",ctr.name);

 strcpy(tran.cname,ctr.name);

 fclose(fc);

 return;

 }

}

 fclose(fc);

 gotorc(18,4);

 printf("INVALID CUSTOMER!");

 gotorc(21,4);

 printf("\n PRESS ANY KEY TO BACK TO TRANSACTION MENU");

 getch();

 transactions();

 }

 invoice()

 {

 rewind(ft);

 if(fread(&tran,sizeof(tran),1,ft)!=1)

tran.invoice=1;

 else

 {

while(fread(&tran,sizeof(tran),1,ft)==1);

 tran.invoice++;

 }

 printf("%ld",tran.invoice);

 }

 avail()

 {

 fm=fopen("c:/movie.txt","rb+");

 if(fm==NULL)

 fm=fopen("c:/movie.txt","wb+");

 while(fread(&mv,sizeof(mv),1,fm)==1)

{

if(strcmpi(tran.title,mv.title)==0)

{

printf("%d",mv.cponshelf);

fclose(fm);

return;

}

}

 gotorc(18,3);

 printf("%s","MOVIE NOT FOUND...!");

 gotorc(21,3);

 printf("\n PRESS ANY KEY TO RETURN");

 getch();

 fclose(fm);

 transactions();

 }

 update()

 {

 long msize;

 msize=sizeof(mv);

 fm=fopen("c:/movie.txt","rb+");

 if(fm==NULL)

 fm=fopen("c:/movie.txt","wb+");

 while(fread(&mv,sizeof(mv),1,fm)==1)

{

if(strcmpi(tran.title,mv.title)==0)

{

mv.cponshelf=mv.cponshelf-tran.copies;

mv.issue=mv.issue+tran.copies;

fseek(fm,-msize,SEEK_CUR);

fwrite(&mv,sizeof(mv),1,fm);

break;

}

}

 fclose(fm);

 return;

 }

listtran()

 {

 int i=1;

 TBG;

 clrscr();

 rewind(ft);

 while(fread(&tran,sizeof(tran),1,ft)==1)

{

printf("\n\n");

printf("\n INVOICE NO(NUMERIC) : %ld
",tran.invoice);

printf("\n CUSTOMER ID : %ld
",tran.cid);

printf("\n CUSTOMER NAME : %s
",tran.cname);

printf("\n MOVIE TITLE : %s
",tran.title);

printf("\n NO. OF COPIES : %d
",tran.copies);

printf("\n DATE OF ISSUE : %d/%d/%d
",tran.doi[0],tran.doi[1],tran.doi[2]);

if(tran.dor[0]!=0)

{

printf("\n DATE OF RETURN : %d/%d/%d
",tran.dor[0],tran.dor[1],tran.dor[2]);

printf("\n RENT : %d
",tran.rent);

printf("\n FINE : %d
",tran.fine);

printf("\n TOTAL AMOUNT : %d",tran.tam);

}

printf("\n..");

if(i%2==0)

{

printf("\n PRESS ANY KEY TO CONTINUE.....");

getch();

clrscr();

}

i++;

}

 fclose(ft);

 printf("\n PRESS ANY KEY TO BACK TO TRANSACTION MENU");

 getch();

 transactions();

 }

 closetran()

{

 long id,sz;

 TBG;

 clrscr();

 sz=sizeof(tran);

 printf("ENTER INVOICE NO: ");

 scanf("%ld",&id);

 clrscr();

 while(fread(&tran,sz,1,ft)==1)

{

if(tran.invoice==id)

{

if(tran.dor[0]!=0)

{

gotorc(4,4);

printf("THIS TRANSACTION IS ALL READY CLOSED...!");

gotorc(7,4);

printf("\n PRESS ANY KEY TO BACK TO TRANSACTION MENU......");

getch();

transactions();

}

fseek(ft,-sz,1);

getdate(&d);

tran.dor[0]=d.da_day;

tran.dor[1]=d.da_mon;

tran.dor[2]=d.da_year;

difference();

tran.rent=tran.copies*25;

if(k==0)

tran.fine=0;

else

tran.fine=tran.copies*(k-1)*5;

tran.tam=tran.rent+tran.fine;

printf("\n INVOICE NO(NUMERIC) : %ld
",tran.invoice);

printf("\n CUSTOMER ID : %ld
",tran.cid);

printf("\n CUSTOMER NAME : %s
",tran.cname);

printf("\n MOVIE TITLE : %s
",tran.title);

printf("\n NO. OF COPIES : %d
",tran.copies);

printf("\n DATE OF ISSUE : %d/%d/%d
",tran.doi[0],tran.doi[1],tran.doi[2]);

printf("\n DATE OF RETURN : %d/%d/%d
",tran.dor[0],tran.dor[1],tran.dor[2]);

printf("\n RENT : %d
",tran.rent);

printf("\n FINE : %d
",tran.fine);

printf("\n TOTAL AMOUNT : %d
",tran.tam);

updateclose();

fwrite(&tran,sz,1,ft);

fclose(ft);

 }

}

 printf("\n\n PRESS ANY KEY TO BACK TO TRANSACTION MENU");

 getch();

 transactions();

}

difference()

 {

 int t,m1,m2,y1,y2,d1,d2;

 d1=tran.doi[0];

 d2=tran.dor[0];

 m1=tran.doi[1];

 m2=tran.dor[1];

 y1=tran.doi[2];

 y2=tran.dor[2];

 t=m1;

 if(y2>y1)

 {

 while(y2>y1)

{

 while(m1<=12)

 {

 check(m1,y1);

 if(m1==t)

 k=days-d1;

 else

 k=k+days;

 m1=m1+1;

 }

 m1=1;y1++;

 }

 while(m1<m2)

 {

check(m1,y1);

k=k+days;

m1++;

 }

 k=k+d2;

 }

 else

 {

 if(m1!=m2)

{

while(m1<m2)

 {

 check(m1,y1);

 if(m1==t)

 k=days-d1;

 else

 k=k+days;

 m1=m1+1;

 }

 k=k+d2;

 }

 else

k=d2-d1;

 }

 return;

 }

check(int m1,int y1)

 {

 if(m1==1||m1==3||m1==5||m1==7||m1==8||m1==10||m1==12)

 days=31;

 else

{

if(m1!=2)

 days=30;

 else

 {

 if(y1%4==0)

days=29;

 else

days=28;

 }

 }

 return;

 }

 updateclose()

 {

 long msize;

 msize=sizeof(mv);

 fm=fopen("c:/movie.txt","rb+");

 if(fm==NULL)

 fm=fopen("c:/movie.txt","wb+");

 while(fread(&mv,sizeof(mv),1,fm)==1)

{

if(strcmpi(tran.title,mv.title)==0)

{

mv.cponshelf=mv.cponshelf+tran.copies;

fseek(fm,-msize,SEEK_CUR);

fwrite(&mv,msize,1,fm);

break;

}

}

 fclose(fm);

 return;

 }

 gotorc(int r,int c)

 {

 union REGS i,o;

 i.h.ah=2;

 i.h.bh=0;

 i.h.dh=r;

 i.h.dl=c;

 int86(16,&i,&o);

 }

 screen1()

 {

 int gd=DETECT,gm;

 initgraph(&gd,&gm,PATH);

 setfillstyle(SOLID_FILL,RED);

 bar(0,0,640,480);

 setfillstyle(SOLID_FILL,WHITE);

 bar(15,15,625,465);

 setfillstyle(SOLID_FILL,RED);

 bar(30,30,610,450);

 settextstyle(7,0,8);

 setcolor(WHITE);

 outtextxy(190,35,"VIDEO");

 setfillstyle(SOLID_FILL,LIGHTGRAY);

 bar3d(180,140,385,130,20,20);

 outtextxy(160,150,"LIBRARY");

 bar3d(140,255,440,245,20,20);

 outtextxy(165,270,"SYSTEM");

 bar3d(145,375,440,365,20,20);

/* sleep(4); */

getch();

 closegraph();

 restorecrtmode();

 }

 screen2()

 {

 int gd=DETECT,gm;

 initgraph(&gd,&gm,PATH);

 setfillstyle(SOLID_FILL,RED);

 bar(0,0,640,480);

 setfillstyle(SOLID_FILL,WHITE);

 bar(15,15,625,465);

 setfillstyle(SOLID_FILL,RED);

 bar(30,30,610,450);

 setfillstyle(SOLID_FILL,LIGHTGRAY);

 bar3d(180,100,420,300,25,25); /*members bar*/

 settextstyle(1,1,10);

 setfillstyle(SOLID_FILL,LIGHTGRAY);

 bar3d(180,50,420,70,20,20); /*project members bar*/

 bar3d(50,350,570,420,25,25); /*project guide bar*/

 setcolor(BLUE);

 settextstyle(1,0,2);

 outtextxy(193,48,"PROJECT DEVELOPER");

outtextxy(250,355,"ACSA");

 outtextxy(193,180,"STUDENT NAME");

/* sleep(4); */

getch();

 closegraph();

 restorecrtmode();

 }

 box(int i,char *p)

 {

 setfillstyle(SOLID_FILL,WHITE);

 bar(179,108+55*i,409,138+55*i);

 setfillstyle(SOLID_FILL,LIGHTGRAY);

 bar(180,110+55*i,410,140+55*i);

 setcolor(BLUE);

// setfillstyle(SOLID_FILL,BLUE);

 settextstyle(1,0,2);

 outtextxy(184,110+55*i,p);

/* getch();

 setfillstyle(SOLID_FILL,WHITE);

 bar(180,60,390,90);

 setfillstyle(SOLID_FILL,RED);

 bar(179,59,389,89); */

/* bar3d(180,100,420,300,-25,25);*/ /*members bar*/

/* closegraph();

 restorecrtmode(); */

 }

selectbox(int i,char *p)

 {

 setfillstyle(SOLID_FILL,WHITE);

 bar(179,108+55*i,409,138+55*i);

 setfillstyle(SOLID_FILL,9);

 bar(180,110+55*i,410,140+55*i);

 setcolor(WHITE);

// setfillstyle(SOLID_FILL,BLUE);

 settextstyle(1,0,2);

 outtextxy(184,110+55*i,p);

 return;

 }

/* getch();

 setfillstyle(SOLID_FILL,WHITE);

 bar(180,60,390,90);

 setfillstyle(SOLID_FILL,RED);

 bar(179,59,389,89); */

/*bar3d (180,100,420,300,-25,25); /*members bar*/

/* closegraph();

 restorecrtmode();*/

pressbutton(int i,char *p)

 {

 setfillstyle(SOLID_FILL,WHITE);

 bar(180,110+55*i,410,140+55*i);

 setfillstyle(SOLID_FILL,9);

 bar(179,108+55*i,409,138+55*i);

 setcolor(CYAN);

 settextstyle(1,0,2);

 outtextxy(184,110+55*i,p);

 delay(350);

 }

 title(char *title,int x)

 {

setfillstyle(SOLID_FILL,9);

bar(0,0,640,50);

setcolor(BLACK);

settextstyle(1,0,5);

outtextxy(x,0,title);

 }

 status()

 {

setfillstyle(SOLID_FILL,9);

bar(0,450,640,480);

setcolor(BLACK);

settextstyle(1,0,3);

outtextxy(30,450,"USE UP & DOWN ARROW KEYS TO SELECT AN OPTION");

return;

 }

 void main()

{

screen1();

screen2();

main_menu();

}

1.
ANSI ‘C’, Tata McGraw Hill Publications.

-
By E Balagurusamy.

2.
Let Us ‘C’, BPB Publication.

-
By Yashwant Kanetkar.

3.
Structured System Analysis and Design, BPB Publications.

-
By Dr. Madhulika Jain &

 Satish Jain.

Internet sites visited

1.
www.wikipedia.com

2.
www.google.com

3.
www.cprogramming.com

4.
www.programmingsimplified.com/tutorials.

My Project cd/dvd

[image: image3.png]AnaVK
YOU

Remarks

EXIT

TRANSACTION SECTION

MOVIE SECTION

CUSTOMER SECTION

MAIN MENU

BACK TO MAIN MENU

EXIT

LIST CUSTOMER

DELETE CUSTOMER

MODIFY CUSTOMER

ADD CUSTOMER

CUSTOMER SECTION

BACK TO MAIN MENU

EXIT

SEARCH MOVIE

LIST MOVIE

DELETE MOVIE

ADD MOVIE

MOVIE SECTION

BACK TO MAIN MENU

NEW TRANSACTION

CLOSE TRANSACTION

LIST TRANSACTION

TRANSACTION SECTION

EXIT

Project Developer

 Aakansha Borana

 ACSA

O

Video library

Management

Movie

Store

Customer

Data Store

Invoice

Credit Card

Cash

2.0

Payment

Details

Send/Receive

request

1.0

Check/Reply

for

availability

Customer

Movie

Store

Payment

EXIT

Enter customer Details Modify Customer details Delete customer details List customer details

Addcus ()

Modify ()

Delete ()

Listcust ()

ID

Name

pn

address

category

doj

EXIT

Do you want to Add new transaction (y/n)

Do you want to close transaction (y/n)

Display list of transaction

Ename Copies Rent

tam

Addtran ()

Closetran ()

Listtran ()

Searchmov ()

EXIT

Do you want to Add another movie (y/n)

The list of movies

Do you want to search the movie

ID

Title Cponshelf Issue Sid

Addmov ()

Listmov ()

Searchmov ()

Attach your CD

2
14
 Ramesh Genwa(978584469)

